Analysis of Compactly Supported Transformations for Landmark-based Image Registration

被引:6
作者
Cavoretto, Roberto [1 ]
De Rossi, Alessandra [1 ]
机构
[1] Univ Turin, Dept Math G Peano, I-10123 Turin, Italy
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 06期
关键词
Scattered data interpolation; radial basis functions; Wendland's functions; elastic registration; RADIAL BASIS FUNCTIONS; SPLINES;
D O I
10.12785/amis/070602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider landmark-based image registration using radial basis function interpolation schemes. More precisely, we analyze some landmark-based image transformations using compactly supported radial basis functions such as Wendland's, Wu's, and Gneiting's functions. Comparisons of interpolation techniques are performed and numerical experiments show differences in accuracy and smoothness of them in some test cases. Finally, a real-life case with medical images is considered.
引用
收藏
页码:2113 / 2121
页数:9
相关论文
共 25 条
  • [1] A class of spline functions for landmark-based image registration
    Allasia, G.
    Cavoretto, R.
    De Rossi, A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) : 923 - 934
  • [2] Radial Basis Functions and Splines for Landmark-Based Registration of Medical Images
    Allasia, Giampietro
    Cavoretto, Roberto
    De Rossi, Alessandra
    Quatember, Bernhard
    Recheis, Wolfgang
    Mayr, Martin
    Demertzis, Stefanos
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 716 - +
  • [3] [Anonymous], NUMERICAL METHODS IM
  • [4] [Anonymous], 2000, HDB MED IMAGING, DOI DOI 10.1117/3.831079.CH8
  • [6] Cavoretto R., 2011, Journal of numerical analysis, industrial and applied mathematics, V5, P141
  • [7] Cavoretto R, 2008, AIP CONF PROC, V1048, P970, DOI 10.1063/1.2991098
  • [8] Landmark-Based Image Registration using Gneiting's Compactly Supported Functions
    Cavoretto, Roberto
    De Rossi, Alessandra
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1335 - 1338
  • [9] Fasshauer G.E., 2007, Meshfree Approximations Methods with Matlab
  • [10] Ill-posed medicine - an introduction to image registration
    Fischer, Bernd
    Modersitzki, Jan
    [J]. INVERSE PROBLEMS, 2008, 24 (03)