The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index

被引:101
|
作者
Ye, Hong [1 ]
Long, Linshuang [1 ]
Zhang, Haitao [1 ]
Zou, Ruqiang [2 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China
[2] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
关键词
Building application; Performance evaluation; Energy saving index; Phase change material; Insulation material; THERMAL-PROPERTIES; STORAGE PROPERTIES; SIMULATION; CONDUCTIVITY; PCMS;
D O I
10.1016/j.apenergy.2013.08.067
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of a kind of shape-stabilized phase change material (PCM) was demonstrated in the Testing and Demonstration Platform for Building Energy Research. The results indicate that the use of PCM could lower the indoor temperature fluctuation and slow the indoor temperature's decline rate. The PCM's performance was also simulated in BuildingEnergy, a modeling software developed by the authors and validated via experiments, and evaluated via energy saving index (ESI), an evaluation index presented by the authors. The ESI is the ratio of a particular material or component's energy saving equivalent (ESE) to the corresponding value of the ideal material or component that can maintain the room at an ideal thermal state in passive mode, where the ESE represents the hypothetical energy that should be input to maintain a passive room at the same thermal state as that when a particular material or component is adopted. The ESI can be used to characterize the performance of an actual building material or component from a common standpoint and be used to evaluate the performance of materials or components in different climatic regions or under different operating situations. The performance of the insulation material, represented by expanded polystyrene (EPS), was also simulated to give a comparison. The results show that the PCM has a better performance in the summer and a worse performance in the winter, while the EPS has a better performance over an entire year. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1118 / 1126
页数:9
相关论文
共 50 条
  • [1] Preparation and thermal performance of shape-stabilized energy storage phase change building materials
    Ma, Feng
    Wang, Xiao-Yan
    Li, Fei
    Chen, Ming-Hui
    Cailiao Gongcheng/Journal of Materials Engineering, 2010, (06): : 54 - 58
  • [2] Energy performance of double shape-stabilized phase change materials wallboards in office building
    Zhu, Na
    Liu, Pengpeng
    Liu, Fuli
    Hu, Pingfang
    Wu, Mengdu
    APPLIED THERMAL ENGINEERING, 2016, 105 : 180 - 188
  • [3] Construction strategies and thermal energy storage applications of shape-stabilized phase change materials
    Yan, Jiahui
    Hu, Dechao
    Wang, Zhiqiang
    Ma, Wenshi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (04)
  • [4] Shape-stabilized phase change materials based on porous supports for thermal energy storage applications
    Huang, Xiubing
    Chen, Xiao
    Li, Ang
    Atinafu, Dimberu
    Gao, Hongyi
    Dong, Wenjun
    Wang, Ge
    CHEMICAL ENGINEERING JOURNAL, 2019, 356 : 641 - 661
  • [5] A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years
    Zhu, Na
    Li, Shanshan
    Hu, Pingfang
    Wei, Shen
    Deng, Renjie
    Lei, Fei
    SUSTAINABLE CITIES AND SOCIETY, 2018, 43 : 251 - 264
  • [6] Evaluation of photothermal conversion performance of shape-stabilized phase change materials using a heat flux evolution curve
    Nishad, Safna
    Mohammed, Himyan
    Sobolciak, Patrik
    Krupa, Igor
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 3717 - 3730
  • [7] Shape-Stabilized Thermochromic Phase-Change Materials
    Li, Zhou
    Wu, Xiu-Wen
    Wu, Nan
    Fan, Yi-Yuan
    Sun, Xiao-Chen
    Song, Ting-Ting
    Zhong, Qi
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2018, 32 (01) : 269 - 272
  • [8] A New Kind of Shape-stabilized Phase Change Materials
    Xiao Liguang
    Ding Rui
    Sun Hao
    Wang Fujun
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (03): : 491 - 494
  • [9] A New Kind of Shape-stabilized Phase Change Materials
    肖力光
    Journal of Wuhan University of Technology(Materials Science), 2011, (03) : 491 - 494
  • [10] A new kind of shape-stabilized phase change materials
    Liguang Xiao
    Rui Ding
    Hao Sun
    Fujun Wang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26 : 491 - 494