pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment

被引:107
作者
Hu, Jun [1 ]
Miura, Seiji [2 ]
Na, Kun [3 ]
Bae, You Han [1 ,4 ]
机构
[1] Univ Utah, Dept Pharmaceut & Pharmaceut Chem, Salt Lake City, UT 84112 USA
[2] Kowa Co Ltd, Fuji Res Labs, Div Pharmaceut, Fuji, Shizuoka, Japan
[3] Catholic Univ Korea, Dept Biotechnol, Bucheon Si 420743, Gyeonggi Do, South Korea
[4] Utah Inha Drug Delivery Syst & Adv Therapeut Res, Inchon, South Korea
关键词
pH-sensitive block copolymer; Extracellular pH; Paclitaxel; Micelle; Tumor heterogeneity; Poly(L-histidine); TUMOR HETEROGENEITY; POLYMERIC MICELLE; BLOCK-COPOLYMER; DRUG-DELIVERY; SOLID TUMORS; NANOPARTICLES; THERAPY; HYPOXIA; MICROENVIRONMENT; PENETRATION;
D O I
10.1016/j.jconrel.2013.08.007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To address cancer cell heterogeneity while endowing tumor specificity, the approach of charge shielding/deshielding was tested in vitro and in vivo with a paclitaxel loaded cationic micelle from a block copolymer of poly(L-histidine) (3.7 kDa) and short branched polyethyleneimine (1.8 kDa). The cationic micelle surface was shielded by electrostatically complexing with a negatively charged mPEG (2 kDa)-block-polysulfadimethoxine (4 kDa) (mPEG-b-PSDM) at pH 7.4. Unshielded micelle at pH 7.4 and deshielded micelle at tumor extracellular pH were readily taken up by two wild types of human cancer cell lines, MCF-7 breast adenocarcinoma and SKOV-3 ovarian carcinoma, while the uptake of the shielded micelle at pH 7.4 was minimal. The preliminary in vivo results from a mouse model xenografted with MCF-7 showed significant anticancer therapeutic efficacy and deep penetration of the micelle into tumor tissues after deshielding, supporting the unique pH-responsive mechanism to treat acidic cancer. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 41 条
[1]   Targeted drug delivery to tumors: Myths, reality and possibility [J].
Bae, You Han ;
Park, Kinam .
JOURNAL OF CONTROLLED RELEASE, 2011, 153 (03) :198-205
[2]   Drug targeting and tumor heterogeneity [J].
Bae, You Han .
JOURNAL OF CONTROLLED RELEASE, 2009, 133 (01) :2-3
[3]   Multimodal Analysis of PEI-Mediated Endocytosis of Nanoparticles in Neural Cells [J].
Evans, Cameron W. ;
Fitzgerald, Melinda ;
Clemons, Tristan D. ;
House, Michael J. ;
Padman, Benjamin S. ;
Shaw, Jeremy A. ;
Saunders, Martin ;
Harvey, Alan R. ;
Zdyrko, Bogdan ;
Luzinov, Igor ;
Silva, Gabriel A. ;
Dunlop, Sarah A. ;
Iyer, K. Swaminathan .
ACS NANO, 2011, 5 (11) :8640-8648
[4]  
FIDLER IJ, 1978, CANCER RES, V38, P2651
[5]   BIOLOGICAL DIVERSITY IN METASTATIC NEOPLASMS - ORIGINS AND IMPLICATIONS [J].
FIDLER, IJ ;
HART, IR .
SCIENCE, 1982, 217 (4564) :998-1003
[6]  
Fischer D, 2004, DRUG METAB DISPOS, V32, P983
[7]   Lectin-directed enzyme activated prodrug therapy (LEAPT): Synthesis and evaluation of rhamnose-capped prodrugs [J].
Garnier, Philippe ;
Wang, Xiang-Tao ;
Robinson, Mark A. ;
van Kasteren, Sander ;
Perkins, Alan C. ;
Frier, Malcolm ;
Fairbanks, Antony J. ;
Davis, Benjamin G. .
JOURNAL OF DRUG TARGETING, 2010, 18 (10) :794-802
[8]  
Gerweck LE, 1996, CANCER RES, V56, P1194
[9]   pH-responsive copolymer assemblies for controlled release of doxorubicin [J].
Gillies, ER ;
Fréchet, JMJ .
BIOCONJUGATE CHEMISTRY, 2005, 16 (02) :361-368
[10]   The effect of particle design on cellular internalization pathways [J].
Gratton, Stephanie E. A. ;
Ropp, Patricia A. ;
Pohlhaus, Patrick D. ;
Luft, J. Christopher ;
Madden, Victoria J. ;
Napier, Mary E. ;
DeSimone, Joseph M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11613-11618