Effects of Wavelength Calibration Mismatch on Temperature-Emissivity Separation Techniques

被引:4
作者
Pieper, Michael [1 ,2 ]
Manolakis, Dimitris G. [2 ]
Truslow, Eric [2 ]
Cooley, Thomas [3 ]
Brueggeman, Michael [4 ]
Jacobson, John [4 ]
Weisner, Andrew [4 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
[3] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA
[4] Natl Air & Space Intelligence Ctr, Wright Patterson AFB, OH 45433 USA
关键词
Calibration; hyperspectral sensors; remote sensing; thermal sensors; LAND-SURFACE TEMPERATURE; ATMOSPHERIC COMPENSATION; RETRIEVAL; ALGORITHM;
D O I
10.1109/JSTARS.2018.2814923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate estimation or retrieval of surface emissivity from long-wave infrared hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. In this paper, we develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model we identify four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise and wavelength calibration. For the TES smoothing technique used in the automatic retrieval of temperature and emissivity using spectral smoothness algorithm, we analyze the bias in the temperature errors caused by wavelength calibration errors under varying ground temperatures and emissivities. It turns out that an increase in calibration error leads to an additional temperature error, which leads to a further increase in the emissivity error. Furthermore, the performance model explains how the errors interact to generate the final temperature errors. We assume exact knowledge of the atmosphere, so that the only causes of error are calibration errors and the smoothing error of the emissivity spectrum.
引用
收藏
页码:1315 / 1324
页数:10
相关论文
共 20 条
[1]   Long-wave infrared surface reflectance spectra retrieved from Telops Hyper-Cam imagery [J].
Adler-Golden, S. M. ;
Conforti, P. ;
Gagnon, M. ;
Tremblay, P. ;
Chamberland, M. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
[2]  
[Anonymous], P SPIE
[3]  
Boonmee Marvin, 2006, Proceedings of the SPIE - The International Society for Optical Engineering, V6233, p62331V, DOI 10.1117/12.665899
[4]   Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data [J].
Borel, C. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (17-18) :5029-5045
[5]   Surface emissivity and temperature retrieval for a hyperspectral sensor [J].
Borel, CC .
IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, :546-549
[6]   A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data [J].
Cheng, Jie ;
Liang, Shunlin ;
Wang, Jindi ;
Li, Xiaowen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1588-1597
[7]   Land surface temperature and emissivity estimation from passive sensor data:: theory and practice-current trends [J].
Dash, P ;
Göttsche, FM ;
Olesen, FS ;
Fischer, H .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (13) :2563-2594
[8]   Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery [J].
Gu, DG ;
Gillespie, AR ;
Kahle, AB ;
Palluconi, FD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (06) :2557-2570
[9]   Spectral calibration of hyperspectral imagery using atmospheric absorption features [J].
Guanter, L ;
Richter, R ;
Moreno, J .
APPLIED OPTICS, 2006, 45 (10) :2360-2370
[10]   Sensitivity of iterative spectrally smooth temperature/emissivity separation to algorithmic assumptions and measurement noise [J].
Ingram, PM ;
Muse, AH .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (10) :2158-2167