OPERATIONS ON POLYHEDRAL PRODUCTS AND A NEW TOPOLOGICAL CONSTRUCTION OF INFINITE FAMILIES OF TORIC MANIFOLDS

被引:32
作者
Bahri, A. [1 ]
Bendersky, M. [2 ]
Cohen, F. R. [3 ]
Gitler, S. [4 ]
机构
[1] Rider Univ, Dept Math, Lawrenceville, NJ 08648 USA
[2] CUNY, Dept Math, New York, NY 10065 USA
[3] Univ Rochester, Dept Math, Rochester, NY 14625 USA
[4] Colegio Nacl, Mexico City, DF, Mexico
关键词
polyhedral product; moment-angle complex; moment-angle manifold; quasi-toric manifold; toric manifold; quasitoric manifold; smooth toric variety; non-singular toric variety; fan; simplicial wedge; join; COMPLEXES; POLYTOPES; QUADRICS;
D O I
10.4310/HHA.2015.v17.n2.a8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A combinatorial construction is used to analyze the properties of polyhedral products [1] and generalized moment-angle complexes with respect to certain operations on CW pairs including exponentiation. This allows for the construction of infinite families of toric manifolds, associated to a given one, in a way that simplifies the combinatorial input and, consequently, the presentation of the cohomology rings. The new input is the interaction of a purely combinatorial construction with natural associated geometric constructions related to polyhedral products and toric manifolds. Applications of the methods and results developed here have appeared in [24, 25, 15, 18, 10, 23], and [19].
引用
收藏
页码:137 / 160
页数:24
相关论文
共 24 条
[1]   THE GEOMETRIC REALIZATION OF MONOMIAL IDEAL RINGS AND A THEOREM OF TREVISAN [J].
Bahri, A. ;
Bendersky, M. ;
Cohen, F. R. ;
Gitler, S. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2013, 15 (02) :1-7
[2]   Cup-products for the polyhedral product functor [J].
Bahri, A. ;
Bendersky, M. ;
Cohen, F. R. ;
Gitler, S. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :457-469
[3]   The polyhedral product functor: A method of decomposition for moment-angle complexes, arrangements and related spaces [J].
Bahri, A. ;
Bendersky, M. ;
Cohen, F. R. ;
Gitler, S. .
ADVANCES IN MATHEMATICS, 2010, 225 (03) :1634-1668
[4]  
Bahri A., GEN DAVIS JANUSZKIEW
[5]   Real quadrics in Cn, complex manifolds and convex polytopes [J].
Bosio, Frederic ;
Meersseman, Laurent .
ACTA MATHEMATICA, 2006, 197 (01) :53-127
[6]  
Buchstaber V., 2015, AMS MATH SURVEYS MON, V204
[7]  
Buchstaber V., 2002, AMS University Lecture Series, V24
[8]  
Buchstaber VM, 2000, RUSS MATH SURV+, V55, P825
[9]  
Choi S., TOHOKU MATH IN PRESS
[10]   TOPOLOGICAL CLASSIFICATION OF QUASITORIC MANIFOLDS WITH SECOND BETTI NUMBER 2 [J].
Choi, Suyoung ;
Park, Seonjeong ;
Suh, Dong Youp .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 256 (01) :19-49