Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing

被引:70
作者
Ma, S. G. [1 ]
Qiao, J. W. [1 ,2 ]
Wang, Z. H. [1 ]
Yang, H. J. [3 ]
Zhang, Y. [4 ]
机构
[1] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Mat Sci & Technol, Lab Appl Phys & Mech Adv Mat, Taiyuan 030024, Peoples R China
[3] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China
[4] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Cold rolling; Microstructure; Tensile behavior; MECHANICAL-PROPERTIES; PHASE-STABILITY; KINETICS; RECOVERY; CRYSTAL;
D O I
10.1016/j.matdes.2015.09.092
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Al0.5CrCuFeNi2 Hs with three different statuses (as-cast, -rolled, and -annealed) are prepared to investigate their microstructure evolutions and tensile behaviors. The as-cast sample exhibits simple solid-solution dendrite structure, imperfect lattice configurations (dislocation lines and stacking faults), and moderate tensile properties. Relying on the significantly-enhanced dislocation density, the as-rolled alloy demonstrates a rapidly-increased tensile strength, but that has come at the expense of the tensile elongation. Annealing treatments reveal that the temperature effect evidently influences the tensile strength of the annealed samples, indicating the recovery of the dislocations with the temperature. Annealing twinning crystals and subgrains induced by the aforementioned lattice defects are embedded on the recrystallized grains, suggesting that multiple deformation mechanisms are possible upon sample loading. The annealed alloys mainly exhibit intergranular-dominated fracture features, which yields a limited modification of the tensile plasticity as compared with the as-rolled alloy. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1057 / 1062
页数:6
相关论文
共 36 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials [J].
Chang, Shou-Yi ;
Li, Chen-En ;
Huang, Yi-Chung ;
Hsu, Hsun-Feng ;
Yeh, Jien-Wei ;
Lin, Su-Jien .
SCIENTIFIC REPORTS, 2014, 4
[3]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[4]  
Dwgarmo E.P., 2003, MAT PROCESSES MANUFA
[5]   Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering [J].
Fang, Sicong ;
Chen, Weiping ;
Fu, Zhiqiang .
MATERIALS & DESIGN, 2014, 54 :973-979
[6]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[7]   Direct observation of subgrain evolution during recovery of cold-rolled aluminium [J].
Gundlach, C ;
Pantleon, W ;
Lauridsen, EM ;
Margulies, L ;
Doherty, RD ;
Poulsen, HF .
SCRIPTA MATERIALIA, 2004, 50 (04) :477-481
[8]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[9]   Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Liu, C. T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 557 :77-81
[10]   Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J].
Hemphill, M. A. ;
Yuan, T. ;
Wang, G. Y. ;
Yeh, J. W. ;
Tsai, C. W. ;
Chuang, A. ;
Liaw, P. K. .
ACTA MATERIALIA, 2012, 60 (16) :5723-5734