Stochastic deformation of a thermodynamic symplectic structure

被引:10
作者
Kazinski, P. O. [1 ]
机构
[1] Tomsk State Univ, Fac Phys, Tomsk 634050, Russia
关键词
fluctuations; stochastic processes; thermodynamic properties; 2ND QUANTIZATION METHODS; COHERENT STATES; FIELD-THEORY; NONEQUILIBRIUM POTENTIALS; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; COMPLEX FLUIDS; DYNAMICS; GEOMETRY; RENORMALIZATION;
D O I
10.1103/PhysRevE.79.011105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
引用
收藏
页数:9
相关论文
共 98 条
[1]   RENORMALIZATION-GROUP APPROACH IN THE THEORY OF TURBULENCE - THE DIMENSIONS OF COMPOSITE-OPERATORS [J].
ADZHEMYAN, LD ;
VASILEV, AN ;
PISMAK, YM .
THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 57 (02) :1131-1141
[2]   Unified geometric description of black hole thermodynamics [J].
Alvarez, Jose L. ;
Quevedo, Hernando ;
Sanchez, Alberto .
PHYSICAL REVIEW D, 2008, 77 (08)
[3]  
[Anonymous], 2004, Equilibrium and nonequilibrium statistical thermodynamics
[4]  
[Anonymous], GENERALIZED COHERENT
[5]  
ARNOLD VI, 1989, METH METHODS CLASSIC
[6]   Hamiltonian structure of thermodynamics with gauge [J].
Balian, R ;
Valentin, P .
EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (02) :269-282
[7]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[8]   QUANTUM-MECHANICS AS A DEFORMATION OF CLASSICAL MECHANICS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (06) :521-530
[9]  
BENAYOUN L, 1999, THESIS GRENOBLE I TE
[10]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]