Class Quantification of Aerial Images using Maximum Likelihood Estimation

被引:0
作者
Wanarse, Satish S. [1 ]
Patil, Tejas G. [1 ]
Patankar, Sanika S. [1 ]
Kulkarni, Jayant V. [1 ]
机构
[1] Vishwakarma Inst Technol, Dept Instrumentat Engn, Pune, Maharashtra, India
来源
2014 FIRST INTERNATIONAL CONFERENCE ON NETWORKS & SOFT COMPUTING (ICNSC) | 2014年
关键词
class quantification; parameter estimation; Maximum Likelihood Estimation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class quantification of aerial images plays a vital role in remote sensing. One of the class quantification method is discussed in this paper. Proposed method uses Maximum Likelihood Estimation based classifier for class quantification. Algorithm is trained by the sample classes derived from parent image. Feature space is estimated from each training sample. Different classes are labeled in test image by maximizing the likelihood function. The experimentation is done on aerial images obtained by Geo eye satellite at the elevation of 0.6km. The percentage area covered by the labeled classes is computed for all test images.
引用
收藏
页码:345 / 347
页数:3
相关论文
共 10 条
[1]  
Campbell J., 1996, Introduction to Remote Sensing, V2nd
[2]  
Cheng X., IEEE GEOSCIENCE REMO
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]   Statistical pattern recognition: A review [J].
Jain, AK ;
Duin, RPW ;
Mao, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (01) :4-37
[5]  
Jensen J. R, 1995, Introductory Digital Image Processing: A Remote Sensing Perspective
[6]   DYNAMIC MEASUREMENT OF COMPUTER GENERATED IMAGE SEGMENTATIONS [J].
LEVINE, MD ;
NAZIF, AM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (02) :155-164
[7]   Tutorial on maximum likelihood estimation [J].
Myung, IJ .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (01) :90-100
[8]  
Vapnik V., 1998, Statistical Learning Theory, P5
[9]   Urban-Area Segmentation Using Visual Words [J].
Weizman, Lior ;
Goldberger, Jacob .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) :388-392
[10]   Object Classification of Aerial Images With Bag-of-Visual Words [J].
Xu, Sheng ;
Fang, Tao ;
Li, Deren ;
Wang, Shiwei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (02) :366-370