Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning

被引:0
|
作者
Sheng, Ziwen [1 ]
Mao, Yingchi [1 ]
Wang, Jiajun [1 ]
Nie, Hua [2 ]
Huang, Jianxin [2 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Suma Technol Co Ltd, Res & Dev Dept, Suzhou, Peoples R China
来源
2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD | 2022年
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Task offloading; Resource allocation; Deep reinforcement learning; Dependent tasks; RESOURCE-ALLOCATION;
D O I
10.1109/CBD58033.2022.00059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The popularization of smart mobile devices has brought about the emergence of a new generation of mobile applications, such as face recognition and virtual reality. The existing mobile edge computing technology can offload tasks to the edge server for computation through the wireless channel, thereby satisfying the low delay requirement of the applications. However, due to the limited computing resources, a single-edge server cannot satisfy the offloading requirements of all users. Request Aware Task Offloading (RATO) scheme was proposed aiming at the problem that the limited edge server computing resources made it impossible to meet the requirements of task completion delay and device energy consumption with the optimization objective to minimize the weighted total overhead (including the mobile device's delay performance metric and energy consumption performance metric). Specifically, we first formulated the task offloading and resource allocation problem as a Markov Decision Process (MDP). After that, a deep reinforcement learning algorithm based on Deep Q Network was developed to solve the optimal offloading scheme. The simulation results show that the weighted total overhead of the RATODQN is lower than that of the existing schemes by 41.59% on average, thereby effectively improving the user's QoE.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [21] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [22] Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Yan, Jia
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5404 - 5419
  • [23] Multi-agent deep reinforcement learning for collaborative task offloading in mobile edge computing networks
    Chen, Minxuan
    Guo, Aihuang
    Song, Chunlin
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [24] Lyapunov-guided Deep Reinforcement Learning for service caching and task offloading in Mobile Edge Computing
    Li, Nianxin
    Zhai, Linbo
    Ma, Zeyao
    Zhu, Xiumin
    Li, Yumei
    COMPUTER NETWORKS, 2024, 250
  • [25] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [26] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [27] Location-aware Task Offloading in Mobile Edge Computing
    Gao, Yongqiang
    Li, Jixiao
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 660 - 667
  • [28] Privacy-preserving task offloading in mobile edge computing: A deep reinforcement learning approach
    Xia, Fanglue
    Chen, Ying
    Huang, Jiwei
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (09) : 1774 - 1792
  • [29] Deep Reinforcement Learning for Online Latency Aware Workload Offloading in Mobile Edge Computing
    Akhavan, Zeinab
    Esmaeili, Mona
    Badnava, Babak
    Yousefi, Mohammad
    Sun, Xiang
    Devetsikiotis, Michael
    Zarkesh-Ha, Payman
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2218 - 2223
  • [30] Joint DNN partitioning and task offloading in mobile edge computing via deep reinforcement learning
    Jianbing Zhang
    Shufang Ma
    Zexiao Yan
    Jiwei Huang
    Journal of Cloud Computing, 12