Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning

被引:0
|
作者
Sheng, Ziwen [1 ]
Mao, Yingchi [1 ]
Wang, Jiajun [1 ]
Nie, Hua [2 ]
Huang, Jianxin [2 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Suma Technol Co Ltd, Res & Dev Dept, Suzhou, Peoples R China
来源
2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD | 2022年
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Task offloading; Resource allocation; Deep reinforcement learning; Dependent tasks; RESOURCE-ALLOCATION;
D O I
10.1109/CBD58033.2022.00059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The popularization of smart mobile devices has brought about the emergence of a new generation of mobile applications, such as face recognition and virtual reality. The existing mobile edge computing technology can offload tasks to the edge server for computation through the wireless channel, thereby satisfying the low delay requirement of the applications. However, due to the limited computing resources, a single-edge server cannot satisfy the offloading requirements of all users. Request Aware Task Offloading (RATO) scheme was proposed aiming at the problem that the limited edge server computing resources made it impossible to meet the requirements of task completion delay and device energy consumption with the optimization objective to minimize the weighted total overhead (including the mobile device's delay performance metric and energy consumption performance metric). Specifically, we first formulated the task offloading and resource allocation problem as a Markov Decision Process (MDP). After that, a deep reinforcement learning algorithm based on Deep Q Network was developed to solve the optimal offloading scheme. The simulation results show that the weighted total overhead of the RATODQN is lower than that of the existing schemes by 41.59% on average, thereby effectively improving the user's QoE.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [1] Security-Aware Task Offloading Using Deep Reinforcement Learning in Mobile Edge Computing Systems
    Lu, Haodong
    He, Xiaoming
    Zhang, Dengyin
    ELECTRONICS, 2024, 13 (15)
  • [2] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [3] Dependency-Aware Dynamic Task Offloading Based on Deep Reinforcement Learning in Mobile-Edge Computing
    Fang, Juan
    Qu, Dezheng
    Chen, Huijie
    Liu, Yaqi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 1403 - 1415
  • [4] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [5] Task offloading in Multiple-Services Mobile Edge Computing: A deep reinforcement learning algorithm
    Peng, Ziyu
    Wang, Gaocai
    Nong, Wang
    Qiu, Yu
    Huang, Shuqiang
    COMPUTER COMMUNICATIONS, 2023, 202 : 1 - 12
  • [6] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [7] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887
  • [8] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [9] Mobile-Aware Online Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing Networks
    Li, Yuting
    Liu, Yitong
    Liu, Xingcheng
    Tu, Qiang
    Xie, Yi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [10] Joint DNN partitioning and task offloading in mobile edge computing via deep reinforcement learning
    Zhang, Jianbing
    Ma, Shufang
    Yan, Zexiao
    Huang, Jiwei
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2023, 12 (01):