Mixed parametric/non-parametric identification of systems with discontinuous nonlinearities

被引:8
作者
Vincent, Tyrone L. [1 ]
Novara, Carlo [2 ]
机构
[1] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
[2] Politecn Torino, Dipartimento Automat & Informat, Turin, Italy
关键词
System identification; Nonlinear systems; Discontinuities; Regularization;
D O I
10.1016/j.automatica.2013.09.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The subject of this paper is identification of discrete time nonlinear dynamical systems when the system dynamics are defined by a discontinuous nonlinear function with the location of the discontinuity unknown. By representing the nonlinear function using both a parametric term to capture the continuous part and a non-parametric term to capture the discontinuous part, we present an identification algorithm along with conditions for recovery of the true nonlinearity. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3661 / 3669
页数:9
相关论文
共 50 条
[31]   Nonlinear identification of systems with parametric excitation [J].
Ye Min ;
Dou SuGuang ;
Zhang Wei ;
Zeng ZhiGang .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (08) :2080-2089
[32]   ON RECURSIVE PARAMETRIC IDENTIFICATION OF WIENER SYSTEMS [J].
Pupeikis, Rimantas .
INFORMATION TECHNOLOGY AND CONTROL, 2011, 40 (01) :21-28
[33]   Parametric Identification of Systems with General Backlash [J].
Voeroes, Jozef .
INFORMATICA, 2012, 23 (02) :283-298
[34]   Nonlinear identification of systems with parametric excitation [J].
Min Ye ;
SuGuang Dou ;
Wei Zhang ;
ZhiGang Zeng .
Science China Technological Sciences, 2011, 54 :2080-2089
[35]   Parametric identification of structural nonlinearities from measured frequency response data [J].
Arslan, Ozge ;
Aykan, Murat ;
Ozguven, H. Nevzat .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (04) :1112-1125
[36]   Flexible, non-parametric modeling using regularized neural networks [J].
Allerbo, Oskar ;
Jornsten, Rebecka .
COMPUTATIONAL STATISTICS, 2022, 37 (04) :2029-2047
[37]   Learning control for non-parametric uncertainties with new convergence property [J].
Yang, Z. ;
Chan, C. W. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (10) :2177-2183
[38]   Flexible, non-parametric modeling using regularized neural networks [J].
Oskar Allerbo ;
Rebecka Jörnsten .
Computational Statistics, 2022, 37 :2029-2047
[39]   Out-of-Sample Extensions for Non-Parametric Kernel Methods [J].
Pan, Binbin ;
Chen, Wen-Sheng ;
Chen, Bo ;
Xu, Chen ;
Lai, Jianhuang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (02) :334-345
[40]   Quantifying the cost of simultaneous non-parametric approximation of several samples [J].
Davies, P. L. ;
Kovac, A. .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :747-780