Single annulus LP estimates for Hilbert transforms along vector fields
被引:23
作者:
Bateman, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, EnglandUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Bateman, Michael
[1
,2
]
机构:
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
Carleson's theorem;
time-frequency analysis;
Stein's conjecture;
Zygmund's conjecture;
differentiation of vector fields;
Hilbert transform in direction of a vector field;
MAXIMAL OPERATORS;
AVERAGES;
SETS;
D O I:
10.4171/RMI/748
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove L-P estimates, p is an element of (1, infinity), on the Hilbert transform along a one variable vector field acting on functions with frequency support in an annulus. Estimates when p > 2 were proved by Lacey and Li. This paper also contains key technical ingredients for a companion paper with Christoph Thiele in which L-P estimates are established for the full Hilbert transform. The operators considered here are singular integral variants of maximal operators arising in the study of planar differentiation problems.