Space infrared detector is the core component of photoelectric conversion in the infrared system, the indicator of which, such as sensibility and reliability, limits the optimum performance of the detection system. In the reliability research of infrared detector, the operating life of the device is a very important index and also a significant subject in the engineering application. In the accelerated life test of space infrared detector, it was difficult to periodically measure blackbody response signal of infrared detector, due to equipment limitations for a long time. Accordingly, it was also hard to get abundant failure data of devices for statistical analysis. For this problem, we designed a novel multi-station testing system for accelerated life test of space infrared device, in which response signal as well as temperature can be measured in-situ and recorded for further analysis. Based on theoretical calculation and analysis of actual measured data, we studied and designed the mechanical structure of the equipment and the key component of the testing system, such as the displacement platform, illustrated the control algorithm and put up a system design proposal which meet the testing requirements well. This work technically supports the accelerated life test of space infrared device.