Massively Parallel Algorithm and Implementation of RI-MP2 Energy Calculation for Peta-Scale Many-Core Supercomputers

被引:29
作者
Katouda, Michio [1 ]
Naruse, Akira [2 ]
Hirano, Yukihiko [2 ]
Nakajima, Takahito [1 ]
机构
[1] RIKEN, Adv Inst Computat Sci, Computat Mol Sci Res Team, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] NVIDIA Corp, Minato Ku, 2-11-7 Akasaka, Tokyo 1070052, Japan
关键词
massively parallel algorithm; GPGPU; electron correlation theory; second-order Moller-Plesset perturbation theory; K computer; TSUBAME; 2.5; NTChem; QUANTUM-CHEMISTRY CALCULATIONS; PLESSET PERTURBATION-THEORY; ELECTRONIC-STRUCTURE CALCULATIONS; BASIS-SETS; RESOLUTION;
D O I
10.1002/jcc.24491
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new parallel algorithm and its implementation for the RIMP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:2623 / 2633
页数:11
相关论文
共 27 条
[1]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[2]   Large-scale correlated electronic structure calculations: The RI-MP2 method on parallel computers [J].
Bernholdt, DE ;
Harrison, RJ .
CHEMICAL PHYSICS LETTERS, 1996, 250 (5-6) :477-484
[3]   Scalability of correlated electronic structure calculations on parallel computers: A case study of the RI-MP2 method [J].
Bernholdt, DE .
PARALLEL COMPUTING, 2000, 26 (7-8) :945-963
[4]   Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method [J].
Bernholdt, DE ;
Harrison, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (05) :1593-1600
[5]   From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes [J].
Chan, Bun ;
Kawashima, Yukio ;
Katouda, Michio ;
Nakajima, Takahito ;
Hirao, Kimihiko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1420-1429
[6]   Moller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms [J].
Cremer, Dieter .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (04) :509-530
[7]   Utilizing high performance computing for chemistry: parallel computational chemistry [J].
de Jong, Wibe A. ;
Bylaska, Eric ;
Govind, Niranjan ;
Janssen, Curtis L. ;
Kowalski, Karol ;
Mueller, Thomas ;
Nielsen, Ida M. B. ;
van Dam, Hubertus J. J. ;
Veryazov, Valera ;
Lindh, Roland .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (26) :6896-6920
[9]   USE OF APPROXIMATE INTEGRALS IN ABINITIO THEORY - AN APPLICATION IN MP2 ENERGY CALCULATIONS [J].
FEYEREISEN, M ;
FITZGERALD, G ;
KOMORNICKI, A .
CHEMICAL PHYSICS LETTERS, 1993, 208 (5-6) :359-363
[10]  
Hasegawa Y., 2011, P 2011 INT C HIGH PE, P1, DOI DOI 10.1145/2063384.2063386