Motor and psychiatric features in idiopathic blepharospasm: A data-driven cluster analysis

被引:6
|
作者
Defazio, Giovanni [1 ]
Gigante, Angelo F. [2 ]
Hallett, Mark [3 ]
Berardelli, Alfredo [4 ,5 ]
Perlmutter, Joel S. [6 ]
Berman, Brian D. [7 ]
Jankovic, Joseph [8 ]
Baumer, Tobias [9 ]
Comella, Cynthia [10 ]
Ercoli, Tommaso [1 ]
Ferrazzano, Gina [4 ]
Fox, Susan H. [11 ]
Kim, Han-Joon [12 ,13 ]
Moukheiber, Emile Sami [14 ]
Richardson, Sarah Pirio [15 ]
Weissbach, Anne [8 ,9 ,16 ]
Jinnah, Hyder A. [17 ]
机构
[1] Univ Cagliari, Dept Med Sci & Publ Hlth, Cagliari, Italy
[2] San Paolo Hosp, Sect Neurol, Bari, Italy
[3] NINDS, Human Motor Control Sect, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[4] Sapienza Univ Rome, Dept Human Neurosci, Rome, Italy
[5] IRCCS NEUROMED, Pozzilli, Italy
[6] Washington Univ, Occupat Therapy, Phys Therapy, Neurol,Radiol,Neurosci, St Louis, MO 63110 USA
[7] Virginia Commonwealth Univ, Richmond, VA USA
[8] Baylor Coll Med, Parkinsons Dis Ctr & Movement Disorders Clin, Dept Neurol, Houston, TX 77030 USA
[9] Univ Lubeck, Inst Syst Motor Sci, Lubeck, Germany
[10] Rush Univ, Med Ctr, New Philadelphia, OH USA
[11] Univ Toronto, Toronto Western Hosp, Krembil Brain Inst, Toronto, ON, Canada
[12] Seoul Natl Univ Hosp, Dept Neurol, Seoul, South Korea
[13] Seoul Natl Univ Hosp, Movement Disorder Ctr, Seoul, South Korea
[14] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[15] Univ New Mexico, Dept Neurol, Albuquerque, NM 87131 USA
[16] Univ Lubeck, Inst Neurogenet, Lubeck, Germany
[17] Emory Univ, Dept Neurol & Human Genet, Atlanta, GA 30322 USA
关键词
Blepharospasm; Depression; Anxiety; Cluster analysis; VALIDATION; DYSTONIA;
D O I
10.1016/j.parkreldis.2022.10.008
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Idiopathic blepharospasm is a clinically heterogeneous dystonia also characterized by non motor symptoms.Methods: We used a k-means cluster analysis to assess 188 patients with idiopathic blepharospasm in order to identify relatively homogeneous subpopulations of patients, using a set of motor and psychiatric variables to generate the cluster solution.Results: Blepharospasm patients reached higher scores on scales assessing depressive-and anxiety-related dis-orders than healthy/disease controls. Cluster analysis suggested the existence of three groups of patients that differed by type of spasms, overall motor severity, and presence/severity of psychiatric problems. The greater severity of motor symptoms was observed in Group 1, the least severity in Group 3, while the severity of blepharospasm in Group 2 was between that observed in Groups 1 and 3. The three motor subtypes also differed by psychiatric features: the lowest severity of psychiatric symptoms was observed in the group with least severe motor symptoms (group 3), while the highest psychiatric severity scores were observed in group 2 that carried intermediate motor severity rather than in the group with more severe motor symptoms (group 1). The three groups did not differ by disease duration, age of onset, sex or other clinical features.Conclusions: The present study suggests that blepharospasm patients may be classified in different subtypes ac-cording to the type of spasms, overall motor severity and presence/severity of depressive symptoms and anxiety.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 50 条
  • [21] Data-driven cluster analysis identifies distinct types of metabolic dysfunction-associated steatotic liver disease
    Raverdy, Violeta
    Tavaglione, Federica
    Chatelain, Estelle
    Lassailly, Guillaume
    De Vincentis, Antonio
    Vespasiani-Gentilucci, Umberto
    Qadri, Sami F.
    Caiazzo, Robert
    Verkindt, Helene
    Saponaro, Chiara
    Kerr-Conte, Julie
    Baud, Gregory
    Marciniak, Camille
    Chetboun, Mikael
    Oukhouya-Daoud, Naima
    Blanck, Samuel
    Vandel, Jimmy
    Olsson, Lisa
    Chakaroun, Rima
    Gnemmi, Viviane
    Leteurtre, Emmanuelle
    Lefebvre, Philippe
    Haas, Joel T.
    Yki-Jarvinen, Hannele
    Francque, Sven
    Staels, Bart
    Le Roux, Carel W.
    Tremaroli, Valentina
    Mathurin, Philippe
    Marot, Guillemette
    Romeo, Stefano
    Pattou, Francois
    NATURE MEDICINE, 2024, 30 (12) : 3624 - 3633
  • [22] A data-driven cluster analysis to explore cognitive reserve and modifiable risk factors in early phases of cognitive decline
    Bernini, Sara
    Valcarenghi, Alice
    Ballante, Elena
    Fassio, Federico
    Picascia, Marta
    Cavallini, Elena
    Ramusino, Matteo Cotta
    Costa, Alfredo
    Vecchi, Tomaso
    Tassorelli, Cristina
    Bottiroli, Sara
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [23] Data-driven clustering of combined Functional Motor Disorders based on the Italian registry
    Mostile, Giovanni
    Geroin, Christian
    Erro, Roberto
    Luca, Antonina
    Marcuzzo, Enrico
    Barone, Paolo
    Ceravolo, Roberto
    Mazzucchi, Sonia
    Pilotto, Andrea
    Padovani, Alessandro
    Romito, Luigi Michele
    Eleopra, Roberto
    Dallocchio, Carlo
    Arbasino, Carla
    Bono, Francesco
    Bruno, Pietro Antonio
    Demartini, Benedetta
    Gambini, Orsola
    Modugno, Nicola
    Olivola, Enrica
    Bonanni, Laura
    Albanese, Alberto
    Ferrazzano, Gina
    De Micco, Rosa
    Zibetti, Maurizio
    Calandra-Buonaura, Giovanna
    Petracca, Martina
    Morgante, Francesca
    Esposito, Marcello
    Pisani, Antonio
    Manganotti, Paolo
    Stocchi, Fabrizio
    Coletti Moja, Mario
    Di Vico, Ilaria Antonella
    Tesolin, Lucia
    De Bertoldi, Francesca
    Ercoli, Tommaso
    Defazio, Giovanni
    Zappia, Mario
    Nicoletti, Alessandra
    Tinazzi, Michele
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [24] Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features
    Wang, Yanlin
    Tang, Shi
    Zhang, Lianqing
    Bu, Xuan
    Lu, Lu
    Li, Hailong
    Gao, Yingxue
    Hu, Xinyu
    Kuang, Weihong
    Jia, Zhiyun
    Sweeney, John A.
    Gong, Qiyong
    Huang, Xiaoqi
    BRITISH JOURNAL OF PSYCHIATRY, 2021, 219 (05) : 606 - 613
  • [25] Data-driven analysis of gaze patterns in face perception: Methodological and clinical contributions
    Masulli, Paolo
    Galazka, Martyna
    Eberhard, David
    Johnels, Jakob Asberg
    Gillberg, Christopher
    Billstedt, Eva
    Hadjikhani, Nouchine
    Andersen, Tobias S.
    CORTEX, 2022, 147 : 9 - 23
  • [26] Data-driven cluster analysis of lipids, inflammation, and aging in relation to new-onset type 2 diabetes mellitus
    Ryu, Ha-Eun
    Heo, Seok-Jae
    Lee, Jong Hee
    Park, Byoungjin
    Han, Taehwa
    Kwon, Yu-Jin
    ENDOCRINE, 2025, : 151 - 161
  • [27] Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization
    Hazen, Robert M.
    Downs, Robert T.
    Eleish, Ahmed
    Fox, Peter
    Gagne, Olivier C.
    Golden, Joshua J.
    Grew, Edward S.
    Hummer, Daniel R.
    Hystad, Grethe
    Krivovichev, Sergey V.
    Li, Congrui
    Liu, Chao
    Ma, Xiaogang
    Morrison, Shaunna M.
    Pan, Feifei
    Pires, Alexander J.
    Prabhu, Anirudh
    Ralph, Jolyon
    Runyon, Simone E.
    Zhong, Hao
    ENGINEERING, 2019, 5 (03) : 397 - 405
  • [28] The Regression Tree Model Building Based on a Cluster-Regression Approximation for Data-Driven Medicine
    Subbotin, Sergey
    Kirsanova, Elena
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON INFORMATICS & DATA- DRIVEN MEDICINE (IDDM 2018), 2018, 2255 : 155 - 169
  • [29] A systematic review of the clinical application of data-driven population segmentation analysis
    Yan, Shi
    Kwan, Yu Heng
    Tan, Chuen Seng
    Thumboo, Julian
    Low, Lian Leng
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [30] A data-driven approach to the study of heterogeneity in idiopathic Parkinson's disease: Identification of three distinct subtypes
    Graham, JM
    Sagar, HJ
    MOVEMENT DISORDERS, 1999, 14 (01) : 10 - 20