Motor and psychiatric features in idiopathic blepharospasm: A data-driven cluster analysis

被引:6
|
作者
Defazio, Giovanni [1 ]
Gigante, Angelo F. [2 ]
Hallett, Mark [3 ]
Berardelli, Alfredo [4 ,5 ]
Perlmutter, Joel S. [6 ]
Berman, Brian D. [7 ]
Jankovic, Joseph [8 ]
Baumer, Tobias [9 ]
Comella, Cynthia [10 ]
Ercoli, Tommaso [1 ]
Ferrazzano, Gina [4 ]
Fox, Susan H. [11 ]
Kim, Han-Joon [12 ,13 ]
Moukheiber, Emile Sami [14 ]
Richardson, Sarah Pirio [15 ]
Weissbach, Anne [8 ,9 ,16 ]
Jinnah, Hyder A. [17 ]
机构
[1] Univ Cagliari, Dept Med Sci & Publ Hlth, Cagliari, Italy
[2] San Paolo Hosp, Sect Neurol, Bari, Italy
[3] NINDS, Human Motor Control Sect, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[4] Sapienza Univ Rome, Dept Human Neurosci, Rome, Italy
[5] IRCCS NEUROMED, Pozzilli, Italy
[6] Washington Univ, Occupat Therapy, Phys Therapy, Neurol,Radiol,Neurosci, St Louis, MO 63110 USA
[7] Virginia Commonwealth Univ, Richmond, VA USA
[8] Baylor Coll Med, Parkinsons Dis Ctr & Movement Disorders Clin, Dept Neurol, Houston, TX 77030 USA
[9] Univ Lubeck, Inst Syst Motor Sci, Lubeck, Germany
[10] Rush Univ, Med Ctr, New Philadelphia, OH USA
[11] Univ Toronto, Toronto Western Hosp, Krembil Brain Inst, Toronto, ON, Canada
[12] Seoul Natl Univ Hosp, Dept Neurol, Seoul, South Korea
[13] Seoul Natl Univ Hosp, Movement Disorder Ctr, Seoul, South Korea
[14] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[15] Univ New Mexico, Dept Neurol, Albuquerque, NM 87131 USA
[16] Univ Lubeck, Inst Neurogenet, Lubeck, Germany
[17] Emory Univ, Dept Neurol & Human Genet, Atlanta, GA 30322 USA
关键词
Blepharospasm; Depression; Anxiety; Cluster analysis; VALIDATION; DYSTONIA;
D O I
10.1016/j.parkreldis.2022.10.008
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Idiopathic blepharospasm is a clinically heterogeneous dystonia also characterized by non motor symptoms.Methods: We used a k-means cluster analysis to assess 188 patients with idiopathic blepharospasm in order to identify relatively homogeneous subpopulations of patients, using a set of motor and psychiatric variables to generate the cluster solution.Results: Blepharospasm patients reached higher scores on scales assessing depressive-and anxiety-related dis-orders than healthy/disease controls. Cluster analysis suggested the existence of three groups of patients that differed by type of spasms, overall motor severity, and presence/severity of psychiatric problems. The greater severity of motor symptoms was observed in Group 1, the least severity in Group 3, while the severity of blepharospasm in Group 2 was between that observed in Groups 1 and 3. The three motor subtypes also differed by psychiatric features: the lowest severity of psychiatric symptoms was observed in the group with least severe motor symptoms (group 3), while the highest psychiatric severity scores were observed in group 2 that carried intermediate motor severity rather than in the group with more severe motor symptoms (group 1). The three groups did not differ by disease duration, age of onset, sex or other clinical features.Conclusions: The present study suggests that blepharospasm patients may be classified in different subtypes ac-cording to the type of spasms, overall motor severity and presence/severity of depressive symptoms and anxiety.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 50 条
  • [1] Nocturnal sleep phenotypes in idiopathic hypersomnia - A data-driven cluster analysis
    Baier, Paul Christian
    Sahlstrom, Hildur
    Markstrom, Agneta
    Furmark, Tomas
    Bothelius, Kristoffer
    SLEEP MEDICINE, 2024, 124 : 127 - 133
  • [2] Clinical heterogeneity in patients with idiopathic blepharospasm: A cluster analysis
    Defazio, G.
    Conte, A.
    Gigante, A. F.
    Ferrazzano, G.
    Pellicciari, R.
    Dagostino, S.
    Fabbrini, G.
    Berardelli, A.
    PARKINSONISM & RELATED DISORDERS, 2017, 40 : 64 - 68
  • [3] Investigating data-driven biological subtypes of psychiatric disorders using specification-curve analysis
    Beijers, Lian
    van Loo, Hanna M.
    Romeijn, Jan-Willem
    Lamers, Femke
    Schoevers, Robert A.
    Wardenaar, Klaas J.
    PSYCHOLOGICAL MEDICINE, 2022, 52 (06) : 1089 - 1100
  • [4] Identification and validation of gestational diabetes subgroups by data-driven cluster analysis
    Salvatori, Benedetta
    Wegener, Silke
    Kotzaeridi, Grammata
    Herding, Annika
    Eppel, Florian
    Dressler-Steinbach, Iris
    Henrich, Wolfgang
    Piersanti, Agnese
    Morettini, Micaela
    Tura, Andrea
    Goebl, Christian S.
    DIABETOLOGIA, 2024, 67 (08) : 1552 - 1566
  • [5] Novel subgroups of obesity and their association with outcomes: a data-driven cluster analysis
    Takeshita, Saki
    Nishioka, Yuichi
    Tamaki, Yuko
    Kamitani, Fumika
    Mohri, Takako
    Nakajima, Hiroki
    Kurematsu, Yukako
    Okada, Sadanori
    Myojin, Tomoya
    Noda, Tatsuya
    Imamura, Tomoaki
    Takahashi, Yutaka
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [6] Novel subgroups of obesity and their association with outcomes: a data-driven cluster analysis
    Saki Takeshita
    Yuichi Nishioka
    Yuko Tamaki
    Fumika Kamitani
    Takako Mohri
    Hiroki Nakajima
    Yukako Kurematsu
    Sadanori Okada
    Tomoya Myojin
    Tatsuya Noda
    Tomoaki Imamura
    Yutaka Takahashi
    BMC Public Health, 24
  • [7] Data-driven multivariate identification of gyrification patterns in a transdiagnostic patient cohort: A cluster analysis approach
    Pfarr, Julia-Katharina
    Meller, Tina
    Brosch, Katharina
    Stein, Frederike
    Thomas-Odenthal, Florian
    Evermann, Ulrika
    Wroblewski, Adrian
    Ringwald, Kai G.
    Hahn, Tim
    Meinert, Susanne
    Winter, Alexandra
    Thiel, Katharina
    Flinkenfluegel, Kira
    Jansen, Andreas
    Krug, Axel
    Dannlowski, Udo
    Kircher, Tilo
    Gaser, Christian
    Nenadic, Igor
    NEUROIMAGE, 2023, 281
  • [8] Data-driven cluster analysis method: a novel outliers detection method in multivariate data
    Duarte, A. R.
    Barbosa, J. J.
    Martins, H. S. R.
    Oliveira, F. L. P.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [9] Different personality profiles in patients with cluster headache: a data-driven approach
    Telesca, Alessandra
    Proietti Cecchini, Alberto
    Leone, Massimo
    Piacentini, Sylvie
    Usai, Susanna
    Grazzi, Licia
    Consonni, Monica
    NEUROLOGICAL SCIENCES, 2023, 44 (08) : 2853 - 2861
  • [10] Data-driven questionnaire-based cluster analysis of asthma in Swedish adults
    Kisiel, Marta A.
    Zhou, Xingwu
    Sundh, Josefin
    Stallberg, Bjorn
    Lisspers, Karin
    Malinovschi, Andrei
    Sandelowsky, Hanna
    Montgomery, Scott
    Nager, Anna
    Janson, Christer
    NPJ PRIMARY CARE RESPIRATORY MEDICINE, 2020, 30 (01)