Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds

被引:5
作者
Calvaruso, Giovanni [1 ]
Zaeim, Amirhesam [2 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
[2] Payame Noor Univ, Dept Math, Tehran, Iran
来源
REVISTA MATEMATICA COMPLUTENSE | 2015年 / 28卷 / 03期
关键词
Killing vector fields; Affine vector fields; Ricci collineations; Matter collineations; MATTER COLLINEATIONS; RICCI COLLINEATIONS; SOLITONS;
D O I
10.1007/s13163-015-0168-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explicitly determine invariant Ricci collineations on four-dimensional non-reductive homogeneous pseudo-Riemannian manifolds, and invariant matter collineations for the Lorentzian examples.
引用
收藏
页码:599 / 622
页数:24
相关论文
共 19 条
[11]   MATTER COLLINEATIONS - THE INVERSE SYMMETRY INHERITANCE PROBLEM [J].
CAROT, J ;
DACOSTA, J ;
VAZ, EGLR .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4832-4838
[12]   Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four [J].
Fels, ME ;
Renner, AG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (02) :282-311
[13]   On the general structure of Ricci collineations for type B warped space-times [J].
Flores, JL ;
Parra, Y ;
Percoco, U .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (09) :3546-3557
[14]  
Hall G., 2008, BSG P, P89
[15]   Ricci and matter collineations in space-time [J].
Hall, GS ;
Roy, I ;
Vaz, EGLR .
GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (03) :299-310
[16]   Conformal Ricci collineations of space-times [J].
Kühnel, W ;
Rademacher, HB .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (10) :1905-1914
[17]   INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :986-994
[18]   INVARIANT YANG-MILLS CONNECTIONS OVER NON-REDUCTIVE PSEUDO-RIEMANNIAN HOMOGENEOUS SPACES [J].
The, Dennis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3879-3914
[19]   Ricci and matter collineations of locally rotationally symmetric space-times [J].
Tsamparlis, M ;
Apostolopoulos, PS .
GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (01) :47-69