STABILITY OF SOLUTIONS FOR NONLINEAR WAVE EQUATIONS WITH A POSITIVE NEGATIVE DAMPING

被引:9
作者
Fragnelli, Genni [1 ]
Mugnai, Dimitri [2 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz, Via Roma 56, I-53100 Siena, Italy
[2] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2011年 / 4卷 / 03期
关键词
Damped nonlinear wave equations; positive-negative damping;
D O I
10.3934/dcdss.2011.4.615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a stability result for damped nonlinear wave equations, when the damping changes sign and the nonlinear term satisfies a few natural assumptions.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 17 条
[1]   Energy decay rate of wave equations with indefinite damping [J].
Benaddi, A ;
Rao, BP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (02) :337-357
[2]   STABILITY OF SOLUTIONS FOR SOME CLASSES OF NONLINEAR DAMPED WAVE EQUATIONS [J].
Fragnelli, Genni ;
Mugnai, Dimitri .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (05) :2520-2539
[3]   Stability results for the wave equation with indefinite damping [J].
Freitas, P ;
Zuazua, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 132 (02) :338-352
[4]   Asymptotic stability for intermittently controlled second-order evolution equations [J].
Haraux, A ;
Martinez, P ;
Vancostenoble, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) :2089-2108
[5]  
Hatvani L., 1997, DIFFERENTIAL INTEGRA, V10, P265
[6]   Coarse-grained finite-temperature theory for the bose condensate in optical lattices [J].
Konabe, S. ;
Nikuni, T. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 150 (1-2) :12-46
[7]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[8]   Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation [J].
Levine, HA ;
Park, SR ;
Serrin, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (01) :181-205
[9]  
Lin J.H., 2005, Vibration and Shock Handbook
[10]   Stabilization of the wave equations with potential and indefinite damping [J].
Liu, KS ;
Rao, BP ;
Zhang, X .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) :747-769