Far from MCAR Obtaining Population-level Estimates of HIV Viral Suppression

被引:9
作者
Balzer, Laura B. [1 ]
Ayieko, James [2 ]
Kwarisiima, Dalsone [3 ]
Chamie, Gabriel [4 ]
Charlebois, Edwin D. [5 ]
Schwab, Joshua [6 ]
van der Laan, Mark J. [6 ]
Kamya, Moses R. [7 ]
Havlir, Diane V. [4 ]
Petersen, Maya L. [6 ]
机构
[1] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Biostat & Epidemiol, 427 Arnold House, Amherst, MA 01003 USA
[2] Kenya Govt Med Res Ctr, Ctr Microbiol Res, Nairobi, Kenya
[3] Infect Dis Res Collaborat, Kampala, Uganda
[4] Univ Calif San Francisco, Dept Med, Div HIV Infect Dis & Global Med, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Med, Div Prevent Sci, San Francisco, CA 94143 USA
[6] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[7] Makerere Univ, Sch Med, Kampala, Uganda
基金
美国国家卫生研究院;
关键词
Causal inference; HIV viral suppression; Machine learning; Missing data; Super Learner; TMLE; CAUSAL INFERENCE; ANTIRETROVIRAL THERAPY; MISSING DATA; IMPLEMENTATION; AFRICA; MODELS;
D O I
10.1097/EDE.0000000000001215
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Population-level estimates of disease prevalence and control are needed to assess prevention and treatment strategies. However, available data often suffer from differential missingness. For example, population-level HIV viral suppression is the proportion of all HIV-positive persons with suppressed viral replication. Individuals with measured HIV status, and among HIV-positive individuals those with measured viral suppression, likely differ from those without such measurements. Methods: We discuss three sets of assumptions to identify population-level suppression in the intervention arm of the SEARCH Study (NCT01864603), a community randomized trial in rural Kenya and Uganda (2013-2017). Using data on nearly 100,000 participants, we compare estimates from (1) an unadjusted approach assuming data are missing-completely-at-random (MCAR); (2) stratification on age group, sex, and community; and (3) targeted maximum likelihood estimation to adjust for a larger set of baseline and time-updated variables. Results: Despite high measurement coverage, estimates of population-level viral suppression varied by identification assumption. Unadjusted estimates were most optimistic: 50% (95% confidence interval [CI] = 46%, 54%) of HIV-positive persons suppressed at baseline, 80% (95% CI = 78%, 82%) at year 1, 85% (95% CI = 83%, 86%) at year 2, and 85% (95% CI = 83%, 87%) at year 3. Stratifying on baseline predictors yielded slightly lower estimates, and full adjustment reduced estimates meaningfully: 42% (95% CI = 37%, 46%) of HIV-positive persons suppressed at baseline, 71% (95% CI = 69%, 73%) at year 1, 76% (95% CI = 74%, 78%) at year 2, and 79% (95% CI = 77%, 81%) at year 3. Conclusions: Estimation of population-level disease burden and control requires appropriate adjustment for missing data. Even in large studies with limited missingness, estimates relying on the MCAR assumption or baseline stratification should be interpreted cautiously.
引用
收藏
页码:620 / 627
页数:8
相关论文
共 52 条
[1]   Targeted maximum likelihood estimation for a binary treatment: A tutorial [J].
Angel Luque-Fernandez, Miguel ;
Schomaker, Michael ;
Rachet, Bernard ;
Schnitzer, Mireille E. .
STATISTICS IN MEDICINE, 2018, 37 (16) :2530-2546
[2]  
[Anonymous], **DATA OBJECT**
[3]  
[Anonymous], 1990, Statistical Science, DOI DOI 10.1214/SS/1177012032
[4]  
[Anonymous], **DATA OBJECT**
[5]  
Balzer Laura, 2016, Epidemiol Methods, V5, P1, DOI 10.1515/em-2014-0020
[6]  
Balzer LB, 2017, EVALUATION PROGR UNA
[7]   Doubly robust estimation in missing data and causal inference models [J].
Bang, H .
BIOMETRICS, 2005, 61 (04) :962-972
[8]   Doubly robust nonparametric inference on the average treatment effect [J].
Benkeser, D. ;
Carone, M. ;
van der Laan, M. J. ;
Gilbert, P. B. .
BIOMETRIKA, 2017, 104 (04) :863-880
[9]   A hybrid mobile approach for population-wide HIV testing in rural east Africa: an observational study [J].
Chamie, Gabriel ;
Clark, Tamara D. ;
Kabami, Jane ;
Kadede, Kevin ;
Ssemmondo, Emmanuel ;
Steinfeld, Rachel ;
Lavoy, Geoff ;
Kwarisiima, Dalsone ;
Sang, Norton ;
Jain, Vivek ;
Thirumurthy, Harsha ;
Liegler, Teri ;
Balzer, Laura B. ;
Petersen, Maya L. ;
Cohen, Craig R. ;
Bukusi, Elizabeth A. ;
Kamya, Moses R. ;
Havlir, Diane V. ;
Charlebois, Edwin D. .
LANCET HIV, 2016, 3 (03) :E111-E119
[10]   Towards 90-90: Findings after two years of the HPTN 071 (PopART) cluster-randomized trial of a universal testing-and-treatment intervention in Zambia [J].
Floyd, Sian ;
Ayles, Helen ;
Schaap, Albertus ;
Shanaube, Kwame ;
MacLeod, David ;
Phiri, Mwelwa ;
Griffith, Sam ;
Bock, Peter ;
Beyers, Nulda ;
Fidler, Sarah ;
Hayes, Richard .
PLOS ONE, 2018, 13 (08)