A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems

被引:1
|
作者
Boiani, Mateus [1 ]
Parpinelli, Rafael Stubs [2 ]
Dorn, Marcio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Santa Catarina State Univ, Grad Program Appl Comp, Joinville, SC, Brazil
来源
INTELLIGENT SYSTEMS, PT I | 2022年 / 13653卷
关键词
Genetic algorithms; Parallel metaheuristics; Island model;
D O I
10.1007/978-3-031-21686-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Evolutionary Algorithms, population diversity is a determinant factor for the quality of the final solutions. Due to diverse problem characteristics, many techniques face difficulties and converge prematurely in local optima. The maintenance of diversity allows the algorithm to explore the search space and efficiently achieve better results. Parallel models are well-known techniques to maintain population diversity; however, design choices lead to different characteristics for the optimization process. For instance, the migration policy on the Island model can control how fast the algorithm converges. This work proposes a new migration policy designed for the Biased Random-Key Genetic Algorithm (BRKGA). Also, the proposal is compared with two traditional strategies and evaluates its performance in continuous search spaces. The results show that the proposal can improve the BRKGA optimization capability with suitable parameters.
引用
收藏
页码:444 / 457
页数:14
相关论文
共 28 条
  • [11] A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks
    Fontes, Dalila B. M. M.
    Goncalves, Jose Fernando
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1303 - 1324
  • [12] An adaptive biased random-key genetic algorithm for the tactical berth allocation problem
    Chaves, Antonio A.
    Oliveira, Rudinei M.
    Goncalves, Jose F.
    Lorena, Luiz A. N.
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 378 - 385
  • [13] Survey on Applications of Biased-Random Key Genetic Algorithms for Solving Optimization Problems
    Prasetyo, H.
    Fauza, G.
    Amer, Y.
    Lee, S. H.
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 863 - 870
  • [14] On adapting migration parameters for multi-population genetic algorithms
    Lin, WY
    Hong, TP
    Liu, SM
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 5731 - 5735
  • [15] Multi-population genetic algorithms with variational search areas
    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221008, China
    Kong Zhi Li Lun Yu Ying Yong, 2006, 2 (256-260):
  • [16] Dynamically Adjusting Migration Rates for Multi-Population Genetic Algorithms
    Hong, Tzung-Pei
    Lin, Wen-Yang
    Liu, Shu-Min
    Lin, Jiann-Horng
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (04) : 410 - 415
  • [17] GPU-BRKGA: A GPU accelerated library for optimization using the biased random-key genetic algorithm
    Alves, Derek
    Oliveira, Davi R. C.
    Andrade, Ermeson
    Nogueira, Bruno
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (01) : 14 - 21
  • [18] The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications
    Andrade, Carlos E.
    Toso, Rodrigo F.
    Goncalves, Jose F.
    Resende, Mauricio G. C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 289 (01) : 17 - 30
  • [19] A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem
    José Fernando Gonçalves
    Mauricio G. C. Resende
    Jorge J. M. Mendes
    Journal of Heuristics, 2011, 17 : 467 - 486
  • [20] A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem
    Goncalves, Jose Fernando
    Resende, Mauricio G. C.
    Mendes, Jorge J. M.
    JOURNAL OF HEURISTICS, 2011, 17 (05) : 467 - 486