Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage

被引:59
作者
Cao, Xuanye
Li, Chaoqun
Xiao, Siyu
Tang, Yunlan
Huang, Jing
Zhao, Shuan
Li, Xueyu
Li, Jixi
Zhang, Ruilin
Yu, Wei [1 ]
机构
[1] Fudan Univ, State Key Lab Genet Engn, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
tRNA synthetases; acetylation; sirtuins; oxidative stress; DNA damage repair; TRANSFER-RNA SYNTHETASE; LYSINE ACETYLATION; DNA-DAMAGE; STRESS; SIRT1; DEACETYLASE; PROTEIN; CANCER; PHOSPHORYLATION; INHIBITION;
D O I
10.1073/pnas.1608488114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tyrosyl-tRNA synthetase (TyrRS) is well known for its essential aminoacylation function in protein synthesis. Recently, TyrRS has been shown to translocate to the nucleus and protect against DNA damage due to oxidative stress. However, the mechanism of TyrRS nuclear localization has not yet been determined. Herein, we report that TyrRS becomes highly acetylated in response to oxidative stress, which promotes nuclear translocation. Moreover, p300/CBP-associated factor (PCAF), an acetyltransferase, and sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, regulate the nuclear localization of TyrRS in an acetylation-dependent manner. Oxidative stress increases the level of PCAF and decreases the level of SIRT1 and deacetylase activity, all of which promote the nuclear translocation of hyperacetylated TyrRS. Furthermore, TyrRS is primarily acetylated on the K244 residue near the nuclear localization signal (NLS), and acetylation inhibits the aminoacylation activity of TyrRS. Molecular dynamics simulations have shown that the in silico acetylation of K244 induces conformational changes in TyrRS near the NLS, which may promote the nuclear translocation of acetylated TyrRS. Herein, we show that the acetylated K244 residue of TyrRS protects against DNA damage in mammalian cells and zebrafish by activating DNA repair genes downstream of transcription factor E2F1. Our study reveals a previously unknown mechanism by which acetylation regulates an aminoacyl-tRNA synthetase, thus affecting the repair pathways for damaged DNA.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 43 条
[1]   Phosphorylation of HuR by Chk2 regulates SIRT1 expression [J].
Abdelmohsen, Kotb ;
Pullmann, Rudolf, Jr. ;
Lai, Ashish ;
Kim, Hyeon Ho ;
Galban, Stefanie ;
Yang, Xiaoling ;
Blethrow, Justin D. ;
Walker, Mark ;
Shubert, Jonathan ;
Gillespie, David A. ;
Furneaux, Henry ;
Gorospe, Myriam .
MOLECULAR CELL, 2007, 25 (04) :543-557
[2]   Sirt1 regulates aging and resistance to oxidative stress in the heart [J].
Alcendor, Ralph R. ;
Gao, Shumin ;
Zhai, Peiyong ;
Zablocki, Daniela ;
Holle, Eric ;
Yu, Xianzhong ;
Tian, Bin ;
Wagner, Thomas ;
Vatner, Stephen F. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2007, 100 (10) :1512-1521
[3]   Mechanism of sirtuin inhibition by nicotinamide:: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme [J].
Avalos, JL ;
Bever, KM ;
Wolberger, C .
MOLECULAR CELL, 2005, 17 (06) :855-868
[4]   The Role of PARP-1 and PARP-2 Enzymes in Metabolic Regulation and Disease [J].
Bai, Peter ;
Canto, Carles .
CELL METABOLISM, 2012, 16 (03) :290-295
[5]   FOXO3a is activated in response to hypoxic stress and inhibits HiF1-induced apoptosis via regulation of CITED2 [J].
Bakker, Walbert J. ;
Harris, Isaac S. ;
Mak, Tak W. .
MOLECULAR CELL, 2007, 28 (06) :941-953
[6]   SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice [J].
Banks, Alexander S. ;
Kon, Ning ;
Knight, Colette ;
Matsumoto, Michihiro ;
Gutierrez-Juarez, Roger ;
Rossetti, Luciano ;
Gu, Wei ;
Accili, Domenico .
CELL METABOLISM, 2008, 8 (04) :333-341
[7]   The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin [J].
Bhattacharyya, A ;
Ear, US ;
Koller, BH ;
Weichselbaum, RR ;
Bishop, DK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23899-23903
[8]   SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress [J].
Caito, Samuel ;
Rajendrasozhan, Saravanan ;
Cook, Suzanne ;
Chung, Sangwoon ;
Yao, Hongwei ;
Friedman, Alan E. ;
Brookes, Paul S. ;
Rahman, Irfan .
FASEB JOURNAL, 2010, 24 (09) :3145-3159
[9]   COGNITION, MECHANISM, AND EVOLUTIONARY RELATIONSHIPS IN AMINOACYL-TRANSFER RNA-SYNTHETASES [J].
CARTER, CW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1993, 62 :715-748
[10]   A Spectrophotometric Assay for Quantitative Measurement of Aminoacyl-tRNA Synthetase Activity [J].
Cestari, Igor ;
Stuart, Kenneth .
JOURNAL OF BIOMOLECULAR SCREENING, 2013, 18 (04) :490-497