Room-temperature entanglement between single defect spins in diamond

被引:363
作者
Dolde, F. [1 ,2 ]
Jakobi, I. [1 ,2 ,3 ,4 ]
Naydenov, B. [1 ,2 ]
Zhao, N. [1 ,2 ]
Pezzagna, S. [5 ]
Trautmann, C. [6 ,7 ]
Meijer, J. [5 ]
Neumann, P. [1 ,2 ]
Jelezko, F. [1 ,2 ,3 ,4 ]
Wrachtrup, J. [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst 3, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, IQST, D-70569 Stuttgart, Germany
[3] Univ Ulm, Inst Quantenopt, D-89081 Ulm, Germany
[4] Univ Ulm, IQST, D-89081 Ulm, Germany
[5] Ruhr Univ Bochum, RUBION, D-44780 Bochum, Germany
[6] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany
[7] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
MAGNETIC-RESONANCE; COUPLED ELECTRON; COLOR-CENTERS; QUANTUM; REALIZATION; MICROSCOPY; STATES;
D O I
10.1038/nphys2545
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory(1), it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons(,)(2) atoms(3), ions(4) and solid-state systems such as spins or quantum dots(5-7), superconducting circuits(8,9) and macroscopic diamond(10). Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67 +/- 0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 31 条
  • [21] Pfaff W, 2013, NAT PHYS, V9, P29, DOI [10.1038/NPHYS2444, 10.1038/nphys2444]
  • [22] A quantum spin transducer based on nanoelectromechanical resonator arrays
    Rabl, P.
    Kolkowitz, S. J.
    Koppens, F. H. L.
    Harris, J. G. E.
    Zoller, P.
    Lukin, M. D.
    [J]. NATURE PHYSICS, 2010, 6 (08) : 602 - 608
  • [23] An elementary quantum network of single atoms in optical cavities
    Ritter, Stephan
    Noelleke, Christian
    Hahn, Carolin
    Reiserer, Andreas
    Neuzner, Andreas
    Uphoff, Manuel
    Muecke, Martin
    Figueroa, Eden
    Bochmann, Joerg
    Rempe, Gerhard
    [J]. NATURE, 2012, 484 (7393) : 195 - U73
  • [24] STED microscopy reveals crystal colour centres with nanometric resolution
    Rittweger, Eva
    Han, Kyu Young
    Irvine, Scott E.
    Eggeling, Christian
    Hell, Stefan W.
    [J]. NATURE PHOTONICS, 2009, 3 (03) : 144 - 147
  • [25] Room-Temperature Implementation of the Deutsch-Jozsa Algorithm with a Single Electronic Spin in Diamond
    Shi, Fazhan
    Rong, Xing
    Xu, Nanyang
    Wang, Ya
    Wu, Jie
    Chong, Bo
    Peng, Xinhua
    Kniepert, Juliane
    Schoenfeld, Rolf-Simon
    Harneit, Wolfgang
    Feng, Mang
    Du, Jiangfeng
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [26] Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits
    Shulman, M. D.
    Dial, O. E.
    Harvey, S. P.
    Bluhm, H.
    Umansky, V.
    Yacoby, A.
    [J]. SCIENCE, 2012, 336 (6078) : 202 - 205
  • [27] Entanglement in a solid-state spin ensemble
    Simmons, Stephanie
    Brown, Richard M.
    Riemann, Helge
    Abrosimov, Nikolai V.
    Becker, Peter
    Pohl, Hans-Joachim
    Thewalt, Mike L. W.
    Itoh, Kohei M.
    Morton, John J. L.
    [J]. NATURE, 2011, 470 (7332) : 69 - 72
  • [28] Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond
    Toyli, David M.
    Weis, Christoph D.
    Fuchs, Gregory D.
    Schenkel, Thomas
    Awschalom, David D.
    [J]. NANO LETTERS, 2010, 10 (08) : 3168 - 3172
  • [29] Quantifying entanglement
    Vedral, V
    Plenio, MB
    Rippin, MA
    Knight, PL
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (12) : 2275 - 2279
  • [30] Waldherr G, 2012, NAT NANOTECHNOL, V7, P105, DOI [10.1038/NNANO.2011.224, 10.1038/nnano.2011.224]