Efficient card-based zero-knowledge proof for Sudoku

被引:43
作者
Sasaki, Tatsuya [1 ]
Miyahara, Daiki [1 ,3 ]
Mizuki, Takaaki [2 ]
Sone, Hideaki [2 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi, Japan
[2] Tohoku Univ, Cybersci Ctr, Sendai, Miyagi, Japan
[3] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
关键词
Zero-knowledge proof; Card-based cryptography; Sudoku; COMPLEXITY;
D O I
10.1016/j.tcs.2020.05.036
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In 2009, Gradwohl, Naor, Pinkas, and Rothblum proposed physical zero-knowledge proof protocols for Sudoku. That is, for a puzzle instance of Sudoku, their excellent protocols allow a prover to convince a verifier that there is a solution to the Sudoku puzzle and the prover knows it, without revealing any information about the solution. The possible drawback is that the existing protocols have an extractability error with a non-zero probability, or need special cards (such as scratch-off cards). Thus, in this study, we propose new protocols to perform zero-knowledge proof of knowledge for Sudoku using a normal deck of playing cards with no extractability error. Our protocols can be easily implemented by humans with a reasonable number of playing cards. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 12 条
[1]  
Bultel X., 2018, STABILIZATION SAFETY
[2]  
Bultel X., 2016, LIPICS, V49
[3]  
Chien YF, 2010, LECT NOTES COMPUT SC, V6099, P102
[4]  
GOLDREICH O, 1991, J ACM, V38, P691, DOI 10.1145/116825.116852
[5]   THE KNOWLEDGE COMPLEXITY OF INTERACTIVE PROOF SYSTEMS [J].
GOLDWASSER, S ;
MICALI, S ;
RACKOFF, C .
SIAM JOURNAL ON COMPUTING, 1989, 18 (01) :186-208
[6]   Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles [J].
Gradwohl, Ronen ;
Naor, Moni ;
Pinkas, Benny ;
Rothblum, Guy N. .
THEORY OF COMPUTING SYSTEMS, 2009, 44 (02) :245-268
[7]   Secure Grouping Protocol Using a Deck of Cards [J].
Hashimoto, Yuji ;
Shinagawa, Kazumasa ;
Nuida, Koji ;
Inamura, Masaki ;
Hanaoka, Goichiro .
INFORMATION THEORETIC SECURITY, ICITS 2017, 2017, 10681 :135-152
[8]  
Ibaraki T, 2016, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2016), P252, DOI [10.1109/MCSI.2016.054, 10.1109/MCSI.2016.23]
[9]  
Ishikawa Rie, 2015, Unconventional Computation and Natural Computation. 14th International Conference, UCNC 2015. Proceedings, P215, DOI 10.1007/978-3-319-21819-9_16
[10]  
Mizuki T, 2014, LECT NOTES COMPUT SC, V8496, P313, DOI 10.1007/978-3-319-07890-8_27