Existence of the mild solution for fractional semilinear initial value problems

被引:108
作者
Jaradat, Omar K. [1 ]
Al-Omari, Ahmad [1 ]
Momani, Shaher [1 ]
机构
[1] Mutah Univ, Dept Math, Amman, Jordan
关键词
Existence and uniqueness; Mild solution; Semilinear; Fractional differential equation;
D O I
10.1016/j.na.2007.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will study the existence and uniqueness of mild solution for the semilinear initial value problem of non-integer order: u((alpha)) (t) = Au(t) + f(t, u(t), Gu(t), Su(t)). where, alpha epsilon (0.1 vertical bar and f(t, u(t), Gu(t), Su(t)) is a given function. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3153 / 3159
页数:7
相关论文
共 9 条
[1]  
BARRETT J, 1954, CAN J MATH, P529
[2]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[3]   Existence and uniqueness for a nonlinear fractional differential equation [J].
Delbosco, D ;
Rodino, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) :609-625
[4]  
HADID S, 1986, ARAB J MATH, V5, P5
[5]   Approximate analytical solution for seepage flow with fractional derivatives in porous media [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 167 (1-2) :57-68
[6]  
Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7
[7]  
Miller K.S.B. Ross., 1993, INTRO FRACTIONAL CAL, V1st, P384
[8]  
Podlubny I., 1999, Fractional Di ff erential Equations
[9]  
何吉欢, 1999, [科技通报, Bulletin of Science and Technology], V15, P86