A review of kernel methods for genetic association studies

被引:16
作者
Larson, Nicholas B. [1 ]
Chen, Jun [1 ]
Schaid, Daniel J. [1 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, 200 First St SW, Rochester, MN 55905 USA
关键词
genetic association analysis; kernel statistic; mixed model; multivariate; pedigree data; RARE-VARIANT ASSOCIATION; QUANTITATIVE TRAITS; SEQUENCING DATA; MACHINE TEST; MARKER-SET; REGRESSION; FAMILY; TESTS; POWERFUL; COMMON;
D O I
10.1002/gepi.22180
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Evaluating the association of multiple genetic variants with a trait of interest by use of kernel-based methods has made a significant impact on how genetic association analyses are conducted. An advantage of kernel methods is that they tend to be robust when the genetic variants have effects that are a mixture of positive and negative effects, as well as when there is a small fraction of causal variants. Another advantage is that kernel methods fit within the framework of mixed models, providing flexible ways to adjust for additional covariates that influence traits. Herein, we review the basic ideas behind the use of kernel methods for genetic association analysis as well as recent methodological advancements for different types of traits, multivariate traits, pedigree data, and longitudinal data. Finally, we discuss opportunities for future research.
引用
收藏
页码:122 / 136
页数:15
相关论文
共 50 条
  • [41] Improper Adjustment for Baseline in Genetic Association Studies of Change in Phenotype
    McArdle, P. F.
    Whitcomb, B. W.
    [J]. HUMAN HEREDITY, 2009, 67 (03) : 176 - 182
  • [42] Multiple comparisons in genetic association studies: a hierarchical modeling approach
    Yi, Nengjun
    Xu, Shizhong
    Lou, Xiang-Yang
    Mallick, Himel
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2014, 13 (01) : 35 - 48
  • [43] A principal components regression approach to multilocus genetic association studies
    Wang, Kai
    Abbott, Diana
    [J]. GENETIC EPIDEMIOLOGY, 2008, 32 (02) : 108 - 118
  • [44] Genetic architecture reconciles linkage and association studies of complex traits
    Sidorenko, Julia
    Couvy-Duchesne, Baptiste
    Kemper, Kathryn E.
    Moen, Gunn-Helen
    Bhatta, Laxmi
    Asvold, Bjorn Olav
    Maegi, Reedik
    Ani, Alireza
    Wang, Rujia
    Nolte, Ilja M.
    Gordon, Scott
    Hayward, Caroline
    Campbell, Archie
    Benjamin, Daniel J.
    Cesarini, David
    Evans, David M.
    Goddard, Michael E.
    Haley, Chris S.
    Porteous, David
    Medland, Sarah E.
    Martin, Nicholas G.
    Snieder, Harold
    Metspalu, Andres
    Hveem, Kristian
    Brumpton, Ben
    Visscher, Peter M.
    Yengo, Loic
    [J]. NATURE GENETICS, 2024, 56 (11) : 2352 - 2360
  • [45] Gene-based genetic association test with adaptive optimal weights
    Chen, Zhongxue
    Lu, Yan
    Lin, Tong
    Liu, Qingzhong
    Wang, Kai
    [J]. GENETIC EPIDEMIOLOGY, 2018, 42 (01) : 95 - 103
  • [46] Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models
    Chen, Han
    Wang, Chaolong
    Conomos, Matthew P.
    Stilp, Adrienne M.
    Li, Zilin
    Sofer, Tamar
    Szpiro, Adam A.
    Chen, Wei
    Brehm, John M.
    Celedon, Juan C.
    Redline, Susan
    Papanicolaou, George J.
    Thornton, Timothy A.
    Laurie, Cathy C.
    Rice, Kenneth
    Lin, Xihong
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (04) : 653 - 666
  • [47] A novel copy number variants kernel association test with application to autism spectrum disorders studies
    Zhan, Xiang
    Girirajan, Santhosh
    Zhao, Ni
    Wu, Michael C.
    Ghosh, Debashis
    [J]. BIOINFORMATICS, 2016, 32 (23) : 3603 - 3610
  • [48] Kernel density estimation by genetic algorithm
    Nishida, Kiheiji
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (08) : 1263 - 1281
  • [49] Robust kernel association testing (RobKAT)
    Martinez, Kara
    Maity, Arnab
    Yolken, Robert H.
    Sullivan, Patrick F.
    Tzeng, Jung-Ying
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (03) : 272 - 282
  • [50] A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies
    Shao, Zhonghe
    Wang, Ting
    Qiao, Jiahao
    Zhang, Yuchen
    Huang, Shuiping
    Zeng, Ping
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)