QUADRATIC TANGLES IN PLANAR ALGEBRAS

被引:31
作者
Jones, Vaughan F. R. [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
INTERMEDIATE SUBFACTORS;
D O I
10.1215/00127094-1723608
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In planar algebras, we show how to project certain simple quadratic tangles onto the linear space spanned by linear and constant tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.
引用
收藏
页码:2257 / 2295
页数:39
相关论文
共 25 条
[1]  
[Anonymous], 1998, Enseign. Math.
[2]  
Asaeda M, 1999, COMMUN MATH PHYS, V202, P1, DOI 10.1007/s002200050574
[3]  
BIGELOW S., 2012, PREPRINT
[4]  
Bisch D, 1997, INVENT MATH, V128, P89
[5]  
EVANS D. E., 1998, OXFORD MATH MONOGR
[6]  
GOODMAN F. M., 1989, Math. Sci. Res. Inst. Publ., V14
[7]   Intermediate subfactors with no extra structure [J].
Grossman, Pinhas ;
Jones, Vaughan F. R. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (01) :219-265
[8]  
HAAGERUP U., 1994, Subfactors (Kyuzeso, 1993), P1
[9]   Partition algebras [J].
Halverson, T ;
Ram, A .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (06) :869-921
[10]   Subfactors of Index Less Than 5, Part 3: Quadruple Points [J].
Izumi, Masaki ;
Jones, Vaughan F. R. ;
Morrison, Scott ;
Snyder, Noah .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (02) :531-554