CG-type algorithms to solve symmetric matrix equations

被引:21
作者
Salkuyeh, DK [1 ]
机构
[1] Mohaghegh Ardabili Univ, Dept Math, Ardabil 56199, Iran
关键词
global FOM and GMRES algorithms; global CG and CR algorithms; matrix equations; Krylov subspace;
D O I
10.1016/j.amc.2005.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global FOM and GMRES are among the effective algorithms to solve linear system of equations with multiple right-hand sides. In this paper, we study these algorithms in the case that the coefficient matrix is symmetric and extract two CG-type algorithms for solving symmetric linear systems of equations with multiple right-hand sides. Then, we compare the numerical performance of the new algorithms with some available methods. Numerical experiments are done on some test matrices from Harwell-Boeing collection. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:985 / 999
页数:15
相关论文
共 9 条
[1]  
Bartels R.H., 1994, CIRC SYST SIGNAL PRO, V13, P820
[2]  
DUFF IS, 1992, RAL92086
[3]   HESSENBERG-SCHUR METHOD FOR THE PROBLEM AX+XB=C [J].
GOLUB, GH ;
NASH, S ;
VANLOAN, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :909-913
[4]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[5]   Global FOM and GMRES algorithms for matrix equations [J].
Jbilou, K ;
Messaoudi, A ;
Sadok, H .
APPLIED NUMERICAL MATHEMATICS, 1999, 31 (01) :49-63
[6]   THE BLOCK CONJUGATE-GRADIENT ALGORITHM AND RELATED METHODS [J].
OLEARY, DP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) :293-322
[7]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[8]  
Saad Y., 1995, ITERATIVE METHODS SP
[9]   AN ITERATIVE METHOD FOR NONSYMMETRIC SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES [J].
SIMONCINI, V ;
GALLOPOULOS, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (04) :917-933