Time of Detection as a Metric for Prioritizing Between Climate Observation Quality, Frequency, and Duration

被引:17
作者
Carter, B. R. [1 ,2 ]
Williams, N. L. [2 ]
Evans, W. [3 ]
Fassbender, A. J. [4 ]
Barbero, L. [5 ,6 ]
Hauri, C. [7 ]
Feely, R. A. [2 ]
Sutton, A. J. [2 ]
机构
[1] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA
[2] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[3] Hakai Inst, Heriot Bay, BC, Canada
[4] Monterey Bay Aquarium Res Inst, Moss Landing, CA USA
[5] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA
[6] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA
[7] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
SURFACE OCEAN PCO(2); ANTHROPOGENIC CO2; TRENDS; PH; VARIABILITY; EMERGENCE; DRIVERS; RECORD;
D O I
10.1029/2018GL080773
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We advance a simple framework based on "time of detection" for estimating the observational needs of studies assessing climate changes amidst natural variability and apply it to several examples related to ocean acidification. This approach aims to connect the Global Ocean Acidification Observing Network "weather" and "climate" data quality thresholds with a single dynamic threshold appropriate for a range of potential ocean signals and environments. A key implication of the framework is that measurement frequency can be as important as measurement accuracy, particularly in highly variable environments. Pragmatic cost-benefit analyses based on this framework can be performed to quantitatively determine which observing strategy will accomplish a given detection goal soonest and resolve a signal with the greatest confidence and to assess how the trade-offs between measurement frequency and accuracy vary regionally.
引用
收藏
页码:3853 / 3861
页数:9
相关论文
共 35 条
[1]   A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) [J].
Bakker, Dorothee C. E. ;
Pfeil, Benjamin ;
Landa, Camilla S. ;
Metzl, Nicolas ;
O'Brien, Kevin M. ;
Olsen, Are ;
Smith, Karl ;
Cosca, Cathy ;
Harasawa, Sumiko ;
Jones, Stephen D. ;
Nakaoka, Shin-ichiro ;
Nojiri, Yukihiro ;
Schuster, Ute ;
Steinhoff, Tobias ;
Sweeney, Colm ;
Takahashi, Taro ;
Tilbrook, Bronte ;
Wada, Chisato ;
Wanninkhof, Rik ;
Alin, Simone R. ;
Balestrini, Carlos F. ;
Barbero, Leticia ;
Bates, Nicholas R. ;
Bianchi, Alejandro A. ;
Bonou, Frederic ;
Boutin, Jacqueline ;
Bozec, Yann ;
Burger, Eugene F. ;
Cai, Wei-Jun ;
Castle, Robert D. ;
Chen, Liqi ;
Chierici, Melissa ;
Currie, Kim ;
Evans, Wiley ;
Featherstone, Charles ;
Feely, Richard A. ;
Fransson, Agneta ;
Goyet, Catherine ;
Greenwood, Naomi ;
Gregor, Luke ;
Hankin, Steven ;
Hardman-Mountford, Nick J. ;
Harlay, Jerome ;
Hauck, Judith ;
Hoppema, Mario ;
Humphreys, Matthew P. ;
Hunt, ChristopherW. ;
Huss, Betty ;
Ibanhez, J. Severino P. ;
Johannessen, Truls .
EARTH SYSTEM SCIENCE DATA, 2016, 8 (02) :383-413
[2]   Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre [J].
Bates, NR .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 48 (8-9) :1507-1528
[3]   Factors challenging our ability to detect long-term trends in ocean chlorophyll [J].
Beaulieu, C. ;
Henson, S. A. ;
Sarmiento, Jorge L. ;
Dunne, J. P. ;
Doney, S. C. ;
Rykaczewski, R. R. ;
Bopp, L. .
BIOGEOSCIENCES, 2013, 10 (04) :2711-2724
[4]   Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-lebased Hydrographic Investigations Program sections P16 and P02 [J].
Carter, B. R. ;
Feely, R. A. ;
Mecking, S. ;
Cross, J. N. ;
Macdonald, A. M. ;
Siedlecki, S. A. ;
Talley, L. D. ;
Sabine, C. L. ;
Millero, F. J. ;
Swift, J. H. ;
Dickson, A. G. ;
Rodgers, K. B. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2017, 31 (02) :306-327
[5]   When can ocean acidification impacts be detected from decadal alkalinity measurements? [J].
Carter, B. R. ;
Frolicher, T. L. ;
Dunne, J. P. ;
Rodgers, K. B. ;
Slater, R. D. ;
Sarmiento, J. L. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (04) :595-612
[6]   Timing of the Departure of Ocean Biogeochemical Cycles from the Preindustrial State [J].
Christian, James R. .
PLOS ONE, 2014, 9 (11)
[7]   The eMLR(C*) Method to Determine Decadal Changes in the Global Ocean Storage of Anthropogenic CO2 [J].
Clement, Dominic ;
Gruber, Nicolas .
GLOBAL BIOGEOCHEMICAL CYCLES, 2018, 32 (04) :654-679
[8]  
Collins W. J., 2008, EVALUATION HADGEM2 M
[9]   Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH Thermodynamic Drivers and the Influence on Sea-Air CO2 Flux [J].
Fassbender, Andrea J. ;
Rodgers, Keith B. ;
Palevsky, Hilary I. ;
Sabine, Christopher L. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2018, 32 (10) :1476-1497
[10]   Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest [J].
Fassbender, Andrea J. ;
Alin, Simone R. ;
Feely, Richard A. ;
Sutton, Adrienne J. ;
Newton, Jan A. ;
Krembs, Christopher ;
Bos, Julia ;
Keyzers, Mya ;
Devol, Allan ;
Ruef, Wendi ;
Pelletier, Greg .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (03) :1367-1401