Non-invasive Cerebrospinal Fluid Pressure Estimation using Multi-Layer Perceptron Neural Networks

被引:0
|
作者
Golzan, S. Mojtaba [1 ]
Avolio, Alberto [1 ]
Graham, Stuart L. [1 ]
机构
[1] Macquarie Univ, Australian Sch Adv Med, N Ryde, NSW 2109, Australia
关键词
SPONTANEOUS VENOUS PULSATIONS; CENTRAL RETINAL VEIN; INTRACRANIAL-PRESSURE; INTRAOCULAR-PRESSURE; CAT;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cerebrospinal fluid pressure (CSFp) provides vital information in various neurological abnormalities including hydrocephalus, intracranial hypertension and brain tumors. Currently, CSFp is measured invasively through implanted catheters within the brain (ventricles and parenchyma) which is associated with a risk of infection and morbidity. In humans, the cerebrospinal fluid communicates indirectly with the ocular circulation across the lamina cribrosa via the optic nerve subarachnoid space. It has been shown that a relationship between retinal venous pulsation, intraocular pressure (IOP) and CSFp exists with the amplitude of retinal venous pulsation being associated with the trans-laminar pressure gradient (i.e. IOP-CSFp). In this study we use this characteristic to develop a non-invasive approach to estimate CSFp. 15 subjects were included in this study. Dynamic retinal venous diameter changes and IOP were measured and fitted into our model. Artificial neural networks (ANN) were applied to construct a relationship between retinal venous pulsation amplitude, IOP (input) and CSFp (output) and develop an algorithm to estimate CSFp based on these parameters. Results show a mean square error of 2.4 mmHg and 1.27 mmHg for train and test data respectively. There was no significant difference between experimental and ANN estimated CSFp values (p>0.01). This study suggests measurement of retinal venous pulsatility in conjunction with IOP may provide a novel approach to estimate CSFp non-invasively.
引用
收藏
页码:5278 / 5281
页数:4
相关论文
共 50 条
  • [1] Prediction of diabetes and hypertension using multi-layer perceptron neural networks
    Bani-Salameh, Hani
    Alkhatib, Shadi M.
    Abdalla, Moawyiah
    Al-Hami, Mo'taz
    Banat, Ruaa
    Zyod, Hala
    Alkhatib, Ahed J.
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (02)
  • [2] Statistical modelling of artificial neural networks using the multi-layer perceptron
    Murray Aitkin
    Rob Foxall
    Statistics and Computing, 2003, 13 : 227 - 239
  • [3] Statistical modelling of artificial neural networks using the multi-layer perceptron
    Aitkin, M
    Foxall, R
    STATISTICS AND COMPUTING, 2003, 13 (03) : 227 - 239
  • [4] RECURSIVE ASSEMBLY OF MULTI-LAYER PERCEPTRON NEURAL NETWORKS
    Motato, Eliot
    Radcliffe, Clark
    7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [5] Estimation of effective connectivity using multi-layer perceptron artificial neural network
    Nasibeh Talebi
    Ali Motie Nasrabadi
    Iman Mohammad-Rezazadeh
    Cognitive Neurodynamics, 2018, 12 : 21 - 42
  • [6] Estimation of effective connectivity using multi-layer perceptron artificial neural network
    Talebi, Nasibeh
    Nasrabadi, Ali Motie
    Mohammad-Rezazadeh, Iman
    COGNITIVE NEURODYNAMICS, 2018, 12 (01) : 21 - 42
  • [7] Estimation of parameters of the transient storage model by means of multi-layer perceptron neural networks
    Rowinski, Pawel M.
    Piotrowski, Adam
    HYDROLOGICAL SCIENCES JOURNAL, 2008, 53 (01) : 165 - 178
  • [8] Identification of Determinants for Globalization of SMEs using Multi-Layer Perceptron Neural Networks
    Draz, Umar
    Jahanzaib, Mirza
    Asghar, Ghulam
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2016, 35 (01) : 39 - 52
  • [9] Application of multi-layer perceptron neural networks to vision problems
    A. Khotanzad
    C. Chung
    Neural Computing & Applications, 1998, 7 : 249 - 259
  • [10] Application of multi-layer perceptron neural networks to vision problems
    Khotanzad, A
    Chung, C
    NEURAL COMPUTING & APPLICATIONS, 1998, 7 (03): : 249 - 259