Exponential Stabilization of Linear Time-Varying Differential Equations with Uncertain Coefficients by Linear Stationary Feedback

被引:9
作者
Zaitsev, Vasilii [1 ]
Kim, Inna [1 ]
机构
[1] Udmurt State Univ, Lab Math Control Theory, Izhevsk 426034, Russia
基金
俄罗斯基础研究基金会;
关键词
linear differential equation; exponential stability; linear output feedback; stabilization; uncertain system; H-INFINITY-CONTROL; ROBUST STABILITY; SUFFICIENT CONDITIONS; QUADRATIC STABILIZABILITY; SYSTEMS;
D O I
10.3390/math8050853
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a control system defined by a linear time-varying differential equation ofn-th order with uncertain bounded coefficients. The problem of exponential stabilization of the system with an arbitrary given decay rate by linear static state or output feedback with constant gain coefficients is studied. We prove that every system is exponentially stabilizable with any pregiven decay rate by linear time-invariant static state feedback. The proof is based on the Levin's theorem on sufficient conditions for absolute non-oscillatory stability of solutions to a linear differential equation. We obtain sufficient conditions of exponential stabilization with any pregiven decay rate for a linear differential equation with uncertain bounded coefficients by linear time-invariant static output feedback. Illustrative examples are considered.
引用
收藏
页数:16
相关论文
共 38 条
[1]  
Aeyels D., 1999, Open problems in mathematical systems and control theory, P1
[3]  
Blanchini F., 2018, UNCERTAINTY COMPLEX, DOI [10.1007/978-3-030-04630-9_1, DOI 10.1007/978-3-030-04630-9_1]
[4]   A convex approach to robust stability for linear systems with uncertain scalar parameters [J].
Bliman, PA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :2016-2042
[5]  
Bylov B. F., 1966, THEORY LYAPUNOV EXPO
[6]   Output control of continuous-time uncertain switched linear systems via switched static output feedback [J].
Carniato, Leonardo Ataide ;
Carniato, Alexandre Ataide ;
Teixeira, Marcelo Carvalho Minhoto ;
Cardim, Rodrigo ;
Mainardi Junior, Edson Italo ;
Assuncao, Edvaldo .
INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (05) :1127-1146
[7]   Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions [J].
Chesi, G. ;
Garulli, A. ;
Tesi, A. ;
Vicino, A. .
AUTOMATICA, 2007, 43 (02) :309-316
[8]   Sufficient and Necessary LMI Conditions for Robust Stability of Rationally Time-Varying Uncertain Systems [J].
Chesi, Graziano .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (06) :1546-1551
[9]  
Demidovich B., 1967, LECT MATH STABILITY
[10]   Invariant Stabilization of Classes of Uncertain Systems with Delays [J].
Gelig, A. H. ;
Zuber, I. E. .
AUTOMATION AND REMOTE CONTROL, 2011, 72 (09) :1941-1950