Efficient Digital Implementation of Extreme Learning Machines for Classification

被引:73
作者
Decherchi, Sergio [1 ]
Gastaldo, Paolo [2 ]
Leoncini, Alessio [2 ]
Zunino, Rodolfo [2 ]
机构
[1] Fdn Ist Italiano Tecnol, Dept Drug Discovery & Dev, I-16163 Genoa, Italy
[2] Univ Genoa, Dept Naval Elect Elect & Telecommun Engn DITEN, I-16145 Genoa, Italy
关键词
Complex programmable logic device (CPLD); extreme learning machine (ELM); field-programmable gate array (FPGA); hardware (HW) neural networks (NNs); REGRESSION;
D O I
10.1109/TCSII.2012.2204112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The availability of compact fast circuitry for the support of artificial neural systems is a long-standing and critical requirement for many important applications. This brief addresses the implementation of the powerful extreme learning machine (ELM) model on reconfigurable digital hardware (HW). The design strategy first provides a training procedure for ELMs, which effectively trades off prediction accuracy and network complexity. This, in turn, facilitates the optimization of HW resources. Finally, this brief describes and analyzes two implementation approaches: one involving field-programmable gate array devices and one embedding low-cost low-performance devices such as complex programmable logic devices. Experimental results show that, in both cases, the design approach yields efficient digital architectures with satisfactory performances and limited costs.
引用
收藏
页码:496 / 500
页数:5
相关论文
共 16 条
[1]  
[Anonymous], UCI REPOSITORY MACHI
[2]   A CNN-based chip for robot locomotion control [J].
Arena, P ;
Fortuna, L ;
Frasca, M ;
Patané, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (09) :1862-1871
[3]   Silicon spiking neurons for hardware implementation of extreme learning machines [J].
Basu, Arindam ;
Shuo, Sun ;
Zhou, Hongming ;
Lim, Meng Hiot ;
Huang, Guang-Bin .
NEUROCOMPUTING, 2013, 102 :125-134
[4]   A Neuron-MOS-Based VLSI Implementation of Pulse-Coupled Neural Networks for Image Feature Generation [J].
Chen, Jun ;
Shibata, Tadashi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (06) :1143-1153
[5]   Current-Mode Analog Adaptive Mechanism for Ultra-Low-Power Neural Networks [J].
Dlugosz, Rafal ;
Talaska, Tomasz ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2011, 58 (01) :31-35
[6]  
Ercegovac M., 2004, Digital Arithmetic
[7]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[8]   Extreme learning machines: a survey [J].
Huang, Guang-Bin ;
Wang, Dian Hui ;
Lan, Yuan .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (02) :107-122
[9]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[10]   Artificial neural networks in hardware A survey of two decades of progress [J].
Misra, Janardari ;
Saha, Indranil .
NEUROCOMPUTING, 2010, 74 (1-3) :239-255