MARVEL: extracting high-precision radial velocities of exoplanet hosts

被引:1
作者
Jannsen, N. [1 ]
Seynaeve, D. [1 ]
De Ridder, J. [1 ]
Sturmer, J. [2 ]
Pember, J. [1 ,3 ]
Schwab, C. [3 ]
Buchhave, L. A. [4 ]
Raskin, G. [4 ]
Vandenbussche, B. [1 ]
Sana, H. [1 ]
Tkachenko, A. [1 ]
Royer, P. [1 ]
De Meester, W. [1 ]
Van Winckel, H. [1 ]
Ribas, I [5 ]
机构
[1] Katholieke Univ Leuven, Inst Astron, B-3001 Leuven, Belgium
[2] Landessternwarte Konigstuhl LSW, D-69117 Heidelberg, Germany
[3] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[4] Tech Univ, Natl Space Inst, DTU Space, Lyngby, Denmark
[5] CSIC, Inst Ciencies Espai, ICE, E-08193 Barcelona, Spain
来源
OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS IX | 2022年 / 12186卷
关键词
Exoplanets; Radial velocity; Spectrograph; Pipeline; Simulations; Telescopes; CM S(-1); SPECTROGRAPH;
D O I
10.1117/12.2630748
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The future ESA space mission PLATO aims to detect thousands of exoplanets, including Earth-like planets, and constrain their radius and mean density. To achieve this goal, the space based photometric observations are not enough but need to be complemented by ground-based observations to measure the Radial Velocity (RV) of the exoplanet host stars. MARVEL is such a facility consisting of four 80 cm telescope linked through optical fibers to a single high-resolution echelle spectrograph, designed for high-precision RV measurements with a uncertainty of similar to 1ms(-1). MARVEL is build by a consortium led by the KU Leuven with contributions from the UK, Austria, Australia, Sweden, Denmark, and Spain, and will be commissioned in 2023. To reach such high RV precision, not only ultra-stable hardware is currently being developed, but also a state-of-the-art data processing pipeline for which we present the first results in this poster.
引用
收藏
页数:11
相关论文
共 31 条
[1]   YARARA: Significant improvement in RV precision through post-processing of spectral time series [J].
Cretignier, M. ;
Dumusque, X. ;
Hara, N. C. ;
Pepe, F. .
ASTRONOMY & ASTROPHYSICS, 2021, 653
[2]  
Fischer D., 2017, AM ASTRONOMICAL SOC, V229, P126
[3]   RadVel: The Radial Velocity Modeling Toolkit [J].
Fulton, Benjamin J. ;
Petigura, Erik A. ;
Blunt, Sarah ;
Sinukoff, Evan .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2018, 130 (986)
[4]   The James Webb Space Telescope [J].
Gardner, Jonathan P. ;
Mather, John C. ;
Clampin, Mark ;
Doyon, Rene ;
Greenhouse, Matthew A. ;
Hammel, Heidi B. ;
Hutchings, John B. ;
Jakobsen, Peter ;
Lilly, Simon J. ;
Long, Knox S. ;
Lunine, Jonathan I. ;
McCaughrean, Mark J. ;
Mountain, Matt ;
Nella, John ;
Rieke, George H. ;
Rieke, Marcia J. ;
Rix, Hans-Walter ;
Smith, Eric P. ;
Sonneborn, George ;
Stiavelli, Massimo ;
Stockman, H. S. ;
Windhorst, Rogier A. ;
Wright, Gillian S. .
SPACE SCIENCE REVIEWS, 2006, 123 (04) :485-606
[5]   A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibration [J].
Gurevich, Yulia V. ;
Stuermer, Julian ;
Schwab, Christian ;
Fuehrer, Thorsten ;
Lamoreaux, Steve K. ;
Quirrenbach, Andreas ;
Walther, Thomas .
GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V, 2014, 9147
[6]   The activity and variability of the Sun and Sun-like stars. I. Synoptic Ca II H and K observations [J].
Hall, Jeffrey C. ;
Lockwood, G. W. ;
Skiff, Brian A. .
ASTRONOMICAL JOURNAL, 2007, 133 (03) :862-881
[7]  
Hernández JIG, 2024, Arxiv, DOI arXiv:1711.05250
[9]   A new extensive library of PHOENIX stellar atmospheres and synthetic spectra [J].
Husser, T. -O. ;
Wende-von Berg, S. ;
Dreizler, S. ;
Homeier, D. ;
Reiners, A. ;
Barman, T. ;
Hauschildt, P. H. .
ASTRONOMY & ASTROPHYSICS, 2013, 553
[10]   Toward a Self-calibrating, Empirical, Light-weight Model for Tellurics in High-resolution Spectra [J].
Leet, Christopher ;
Fischer, Debra A. ;
Valenti, Jeff A. .
ASTRONOMICAL JOURNAL, 2019, 157 (05)