The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. GTP is hydrolytically opened, converted into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate leads to 6,7-dimethyl-8-ribityllumazine. The final step in the biosynthesis of the vitamin involves the dismutation of 6,7-dimethyl-8-ribityllumazine catalyzed by riboflavin synthase. The mechanistically unusual reaction involves the transfer of a four-carbon fragment between two identical substrate molecules. The second product, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, is recycled in the biosynthetic pathway by 6,7-dimethyl-8-ribityllumazine synthase. This article will review structures and reaction mechanisms of riboflavin synthases and related proteins up to 2007 and 122 references are cited. (c) 2008 Elsevier Inc. All rights reserved.