Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future

被引:29
作者
Cellina, Michaela [1 ]
Ce, Maurizio [2 ]
Irmici, Giovanni [2 ]
Ascenti, Velio [2 ]
Khenkina, Natallia [2 ]
Toto-Brocchi, Marco [2 ]
Martinenghi, Carlo [3 ]
Papa, Sergio [4 ]
Carrafiello, Gianpaolo [2 ,5 ]
机构
[1] Fatebenefratelli Hosp, Radiol Dept, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, I-20121 Milan, Italy
[2] Univ Milan, Postgraduat Sch Radiodiagnost, Via Festa Perdono 7, I-20122 Milan, Italy
[3] Osped San Raffaele, IRCCS, Dept Radiol, Via Olgettina 60, I-20132 Milan, Italy
[4] Ctr Diagnost Italiano, Unit Diagnost Imaging & Stereotact Radiosurg, Via St Bon 20, I-20147 Milan, Italy
[5] Policlin Milano Osped Maggiore, Fdn IRCCS Ca Granda, Radiol Dept, Via Sforza 35, I-20122 Milan, Italy
关键词
artificial intelligence; lung cancer; deep learning; FACTOR RECEPTOR MUTATION; NODULE DETECTION; MEDICAL IMAGES; RADIOMICS; CLASSIFICATION; INFORMATION; IDENTIFICATION; RADIOGENOMICS; SEGMENTATION; VALIDATION;
D O I
10.3390/diagnostics12112644
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients' outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
引用
收藏
页数:25
相关论文
共 135 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Gated-Dilated Networks for Lung Nodule Classification in CT Scans [J].
Al-Shabi, Mundher ;
Lee, Hwee Kuan ;
Tan, Maxine .
IEEE ACCESS, 2019, 7 :178827-178838
[4]  
[Anonymous], Cancer Stat Facts: Lung and Bronchus Cancer
[5]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]   Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions [J].
Azad, Reza ;
Asadi-Aghbolaghi, Maryam ;
Fathy, Mahmood ;
Escalera, Sergio .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :406-415
[8]   Deep segmentation networks predict survival of non-small cell lung cancer [J].
Baek, Stephen ;
He, Yusen ;
Allen, Bryan G. ;
Buatti, John M. ;
Smith, Brian J. ;
Tong, Ling ;
Sun, Zhiyu ;
Wu, Jia ;
Diehn, Maximilian ;
Loo, Billy W. ;
Plichta, Kristin A. ;
Seyedin, Steven N. ;
Gannon, Maggie ;
Cabel, Katherine R. ;
Kim, Yusung ;
Wu, Xiaodong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[10]   A bi-directional deep learning architecture for lung nodule semantic segmentation [J].
Bhattacharyya, Debnath ;
Rao, N. Thirupathi ;
Joshua, Eali Stephen Neal ;
Hu, Yu-Chen .
VISUAL COMPUTER, 2023, 39 (11) :5245-5261