A strong flow-based formulation for the shortest path problem in digraphs with negative cycles

被引:10
作者
Ibrahim, M. S. [1 ]
Maculan, N. [2 ]
Minoux, M. [1 ]
机构
[1] Univ Paris 06, LIP6, Paris, France
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
linear programming; digraphs; shortest path;
D O I
10.1111/j.1475-3995.2008.00681.x
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we are interested in the shortest path problem between two specified vertices in digraphs containing negative cycles. We study two integer linear formulations and their linear relaxations. A first formulation, close in spirit to a classical formulation of the traveling salesman problem, requires an exponential number of constraints. We study a second formulation that requires a polynomial number of constraints and, as confirmed by computational experiments, its linear relaxation is significantly sharper. From the second formulation we propose a family of linear relaxations with fewer variables than the classical linear one.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1979, COMPUT INTRACTABILIT
[2]   A LIFTING PROCEDURE FOR THE ASYMMETRIC TRAVELING SALESMAN POLYTOPE AND A LARGE NEW CLASS OF FACETS [J].
BALAS, E ;
FISCHETTI, M .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :325-352
[3]  
Bellman R.E., 1958, Q APPL MATH, V16, P87
[4]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI [10.1007/BF01386390, DOI 10.1007/BF01386390]
[5]  
Ford L. R, 1962, FLOWS NETWORKS
[6]  
Gondran M., 1995, Graphes Et Algorithmes, V3
[7]  
IBRAHIM MS, 2007, THESIS U PIERRE MARI
[8]   A LOWER BOUND FOR THE SHORTEST HAMILTONIAN PATH IN DIRECTED-GRAPHS [J].
MACULAN, N ;
SALLES, JJC .
OR SPEKTRUM, 1991, 13 (02) :99-102
[9]  
Maculan Nelson, 2003, Pesqui. Oper., V23, P161
[10]  
SALLES JJC, 1989, THESIS IMPA RIO DE J