Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake

被引:208
作者
Castoe, Todd A. [1 ]
Poole, Alexander W. [1 ]
de Koning, A. P. Jason [1 ]
Jones, Kenneth L. [1 ]
Tomback, Diana F. [2 ]
Oyler-McCance, Sara J. [3 ]
Fike, Jennifer A. [3 ]
Lance, Stacey L. [4 ]
Streicher, Jeffrey W. [5 ,6 ]
Smith, Eric N. [5 ,6 ]
Pollock, David D. [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA
[2] Univ Colorado, Dept Integrat Biol, Denver, CO 80202 USA
[3] US Geol Survey Ft Collins Sci Ctr, Ft Collins, CO USA
[4] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA
[5] Univ Texas Arlington, Dept Biol & Amphibian, Arlington, TX 76019 USA
[6] Univ Texas Arlington, Reptile Divers Res Ctr, Arlington, TX 76019 USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
基金
美国国家卫生研究院;
关键词
REPEAT ARRAYS; MARKERS; SIZE;
D O I
10.1371/journal.pone.0030953
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR'' approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample - a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing
    Abdelkrim, Jawad
    Robertson, Bruce C.
    Stanton, Jo-Ann L.
    Gemmell, Neil J.
    [J]. BIOTECHNIQUES, 2009, 46 (03) : 185 - +
  • [2] Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data
    Allentoft, Morten E.
    Schuster, Stephan C.
    Holdaway, Richard N.
    Hale, Marie L.
    McLay, Emma
    Oskam, Charlotte
    Gilbert, M. Thomas P.
    Spencer, Peter
    Willerslev, Eske
    Bunce, Michael
    [J]. BIOTECHNIQUES, 2009, 46 (03) : 195 - +
  • [3] The rise, fall and renaissance of microsatellites in eukaryotic genomes
    Buschiazzo, Emmanuel
    Gemmell, Neil J.
    [J]. BIOESSAYS, 2006, 28 (10) : 1040 - 1050
  • [4] Sequencing the genome of the Burmese python']python (Python']Python molurus bivittatus) as a model for studying extreme adaptations in snakes
    Castoe, Todd A.
    de Koning, A. P. Jason
    Hall, Kathryn T.
    Yokoyama, Ken D.
    Gu, Wanjun
    Smith, Eric N.
    Feschotte, Cedric
    Uetz, Peter
    Ray, David A.
    Dobry, Jason
    Bogden, Robert
    Mackessy, Stephen P.
    Bronikowski, Anne M.
    Warren, Wesley C.
    Secor, Stephen M.
    Pollock, David D.
    [J]. GENOME BIOLOGY, 2011, 12 (07):
  • [5] Discovery of Highly Divergent Repeat Landscapes in Snake Genomes Using High-Throughput Sequencing
    Castoe, Todd A.
    Hall, Kathryn T.
    Mboulas, Marcel L. Guibotsy
    Gu, Wanjun
    de Koning, A. P. Jason
    Fox, Samuel E.
    Poole, Alexander W.
    Vemulapalli, Vijetha
    Daza, Juan M.
    Mockler, Todd
    Smith, Eric N.
    Feschotte, Cedric
    Pollock, David D.
    [J]. GENOME BIOLOGY AND EVOLUTION, 2011, 3 : 641 - 653
  • [6] A proposal to sequence the genome of a garter snake (Thamnophis sirtalis)
    Castoe, Todd A.
    Bronikowski, Anne M.
    Brodie, Edmund D., III
    Edwards, Scott V.
    Pfrender, Michael E.
    Shapiro, Michael D.
    Pollock, David D.
    Warren, Wesley C.
    [J]. STANDARDS IN GENOMIC SCIENCES, 2011, 4 (02): : 257 - 270
  • [7] Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence
    Castoe, Todd A.
    Poole, Alexander W.
    Gu, Wanjun
    de Koning, A. P. Jason
    Daza, Juan M.
    Smith, Eric N.
    Pollock, David D.
    [J]. MOLECULAR ECOLOGY RESOURCES, 2010, 10 (02) : 341 - 347
  • [8] De Smet W.H. O., 1981, Acta Zoologica et Pathologica Antverpiensia, V76, P119
  • [9] MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design
    Faircloth, Brant C.
    [J]. MOLECULAR ECOLOGY RESOURCES, 2008, 8 (01) : 92 - 94
  • [10] Benchmarking Next-Generation Transcriptome Sequencing for Functional and Evolutionary Genomics
    Gibbons, John G.
    Janson, Eric M.
    Hittinger, Chris Todd
    Johnston, Mark
    Abbot, Patrick
    Rokas, Antonis
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (12) : 2731 - 2744