Negative Log Likelihood Ratio Loss for Deep Neural Network Classification

被引:34
|
作者
Yao, Hengshuai [1 ]
Zhu, Dong-lai [2 ]
Jiang, Bei [3 ]
Yu, Peng [3 ]
机构
[1] Huawei Hisilicon, Edmonton, AB, Canada
[2] Huawei Noahs Ark Lab, Edmonton, AB, Canada
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
来源
PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2019, VOL 1 | 2020年 / 1069卷
关键词
Loss function; Cross entropy; Likelihood ratio; Deep neural network;
D O I
10.1007/978-3-030-32520-6_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In deep neural network, the cross-entropy loss function is commonly used for classification. Minimizing cross-entropy is equivalent to maximizing likelihood under assumptions of uniform feature and class distributions. It belongs to generative training criteria which does not directly discriminate correct class from competing classes. We propose a discriminative loss function with negative log likelihood ratio between correct and competing classes. It significantly outperforms the cross-entropy loss on the CIFAR-10 image classification task.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 50 条
  • [1] Toward Multicenter Skin Lesion Classification Using Deep Neural Network With Adaptively Weighted Balance Loss
    Yue, Guanghui
    Wei, Peishan
    Zhou, Tianwei
    Jiang, Qiuping
    Yan, Weiqing
    Wang, Tianfu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (01) : 119 - 131
  • [2] Log-Likelihood-Ratio Cost Function as Objective Loss for Speaker Verification Systems
    Mingote, Victoria
    Miguel, Antonio
    Ortega, Alfonso
    Lleida, Eduardo
    INTERSPEECH 2021, 2021, : 2361 - 2365
  • [3] A Fast Multi-Loss Learning Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Yang, Zheng
    He, Jiashuo
    Li, Rong
    Huang, Sai
    Feng, Zhiyong
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (06) : 1503 - 1518
  • [4] Automated Endoscopic Image Classification via Deep Neural Network With Class Imbalance Loss
    Yue, Guanghui
    Wei, Peishan
    Liu, Yun
    Luo, Yu
    Du, Jingfeng
    Wang, Tianfu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Empirical study on tangent loss function for classification with deep neural networks
    Zhang, Xu
    Lu, Wenpeng
    Pan, Yan
    Wu, Hao
    Wang, Rongyao
    Yu, Rui
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 90
  • [6] Log-sum enhanced sparse deep neural network
    Qiao, Chen
    Shi, Yan
    Diao, Yu-Xian
    Calhoun, Vince D.
    Wang, Yu-Ping
    NEUROCOMPUTING, 2020, 407 : 206 - 220
  • [7] Deep Neural Network for Melanoma Classification in Dermoscopic Images
    Wang Jiahao
    Jin Xingguang
    Yuan, Wenjie
    Luo, Zhenyi
    Yu, Zhengyang
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 666 - 669
  • [8] Arrhythmia Classification System Using Deep Neural Network
    Jeon, EunKwang
    Han, Sangwook
    Chae, MinSu
    Lee, HwaMin
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2019), 2019, : 111 - 114
  • [9] Hybrid-loss supervision for deep neural network
    Cheng, Qishang
    Li, Hongliang
    Wu, Qingbo
    Ngan, King Ngi
    NEUROCOMPUTING, 2020, 388 : 78 - 89
  • [10] Underwater Target Classification Using Deep Neural Network
    Yu, Yang
    Cao, Xu
    Zhang, Xiaomin
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,