Wiener index of certain families of hexagonal chains

被引:17
作者
Dobrynin, Andrey A. [1 ]
Estaji, Ehsan [2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia
[2] Hakim Sabzevari Univ, Dept Math & Comp Sci, Sabzevar, Iran
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Graph invariant; Wiener index; Hexagonal chain;
D O I
10.1007/s12190-018-1177-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index is a topological index of a molecule, defined as the sum of distances between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule. Hexagonal chains consist of hexagonal rings connected with each other by edges. This class of graphs contains molecular graphs of unbranched catacondensed benzenoid hydrocarbons. A segment of a chain is its maximal subchain with linear connected hexagons. Chains with segments of equal lengths can be coded by binary words. Formulas for the sums of Wiener indices of hexagonal chains of some families are derived and computational examples are presented.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
[41]   On the Wiener Index of Graphs [J].
Wu, Xiaoying ;
Liu, Huiqing .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) :535-544
[42]   Terminal Wiener index [J].
Ivan Gutman ;
Boris Furtula ;
Miroslav Petrović .
Journal of Mathematical Chemistry, 2009, 46 :522-531
[43]   On the Wiener Index of Graphs [J].
Xiaoying Wu ;
Huiqing Liu .
Acta Applicandae Mathematicae, 2010, 110 :535-544
[44]   Computing Wiener Polynomial, Wiener Index and Hyper Wiener Index of C80 Fullerene by GAP Program [J].
Iranmanesh, Ali ;
Alizadeh, Y. ;
Mirzaie, S. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2009, 17 (05) :560-566
[45]   Wiener numbers of random pentagonal chains [J].
Wang, Hong-Yong ;
Qin, Jiang ;
Gutman, Ivan .
IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01) :59-76
[46]   Wiener Indices in Random Cyclooctane Chains [J].
WEI Shouliu ;
KE Xiaoling ;
WANG Yan .
Wuhan University Journal of Natural Sciences, 2018, 23 (06) :498-502
[47]   Wiener index versus Szeged index in networks [J].
Klavzar, Sandi ;
Nadjafi-Arani, M. J. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) :1150-1153
[48]   Wiener index, Harary index and graph properties [J].
Feng, Lihua ;
Zhu, Xiaomin ;
Liu, Weijun .
DISCRETE APPLIED MATHEMATICS, 2017, 223 :72-83
[49]   The wiener index of graphs of arbitrary girth and their line graphs [J].
Dobrynin A.A. .
Journal of Applied and Industrial Mathematics, 2010, 4 (04) :505-511
[50]   WIENER INDEX AND TRACEABLE GRAPHS [J].
Yang, Lihui .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) :380-383