Wiener index of certain families of hexagonal chains

被引:17
|
作者
Dobrynin, Andrey A. [1 ]
Estaji, Ehsan [2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia
[2] Hakim Sabzevari Univ, Dept Math & Comp Sci, Sabzevar, Iran
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
Graph invariant; Wiener index; Hexagonal chain;
D O I
10.1007/s12190-018-1177-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index is a topological index of a molecule, defined as the sum of distances between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule. Hexagonal chains consist of hexagonal rings connected with each other by edges. This class of graphs contains molecular graphs of unbranched catacondensed benzenoid hydrocarbons. A segment of a chain is its maximal subchain with linear connected hexagons. Chains with segments of equal lengths can be coded by binary words. Formulas for the sums of Wiener indices of hexagonal chains of some families are derived and computational examples are presented.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [1] Wiener index of certain families of hexagonal chains
    Andrey A. Dobrynin
    Ehsan Estaji
    Journal of Applied Mathematics and Computing, 2019, 59 : 245 - 256
  • [2] On the hyper Wiener index of hexagonal chains
    Heydari, Abbas
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (3-4): : 491 - 494
  • [3] The average Wiener index of hexagonal chains
    Dobrynin, AA
    Gutman, I
    COMPUTERS & CHEMISTRY, 1999, 23 (06): : 571 - 576
  • [4] On the Wiener Index of Certain Families of Fibonacenes
    Dobrynin, Andrey A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 565 - 574
  • [5] Congruence relations for the Wiener index of hexagonal chains
    Dobrynin, AA
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (06): : 1109 - 1110
  • [6] A simple formula for the calculation of the Wiener index of hexagonal chains
    Dobrynin, AA
    COMPUTERS & CHEMISTRY, 1999, 23 (01): : 43 - 48
  • [7] Generalized Wiener indices in hexagonal chains
    Eu, SP
    Yang, BY
    Yeh, YN
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (02) : 426 - 435
  • [8] Wiener Index of Hexagonal Systems
    Andrey A. Dobrynin
    Ivan Gutman
    Sandi Klavžar
    Petra Žigert
    Acta Applicandae Mathematica, 2002, 72 : 247 - 294
  • [9] Wiener index of hexagonal systems
    Dobrynin, AA
    Gutman, I
    Klavzar, S
    Zigert, P
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) : 247 - 294
  • [10] On Wiener Polarity Index and Wiener Index of Certain Triangular Networks
    Adnan, Mr.
    Bokhary, Syed Ahtsham Ul Haq
    Imran, Muhammad
    JOURNAL OF CHEMISTRY, 2021, 2021