Towards Automatic Quantitative Quality Control for MRI

被引:4
作者
Lauzon, Carolyn B. [1 ,2 ]
Caffo, Brian C. [3 ]
Landman, Bennett A. [2 ]
机构
[1] Vanderbilt Univ, Inst Imaging, Dept Elect Engn & Comp Sci, Med Image Anal & Stat Interpretat Lab, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37235 USA
[3] Johns Hopkins Med Inst, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
来源
MEDICAL IMAGING 2012: IMAGE PROCESSING | 2012年 / 8314卷
关键词
quality control; bias assessment; bootstrap; cluster computing; MRI; DTI;
D O I
10.1117/12.910819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quality and consistency of clinical and research data collected from Magnetic Resonance Imaging (MRI) scanners may become suspect due to a wide variety of common factors including, experimental changes, hardware degradation, hardware replacement, software updates, personnel changes, and observed imaging artifacts. Standard practice limits quality analysis to visual assessment by a researcher/clinician or a quantitative quality control based upon phantoms which may not be timely, cannot account for differing experimental protocol (e. g. gradient timings and strengths), and may not be pertinent to the data or experimental question at hand. This paper presents a parallel processing pipeline developed towards experiment specific automatic quantitative quality control of MRI data using diffusion tensor imaging (DTI) as an experimental test case. The pipeline consists of automatic identification of DTI scans run on the MRI scanner, calculation of DTI contrasts from the data, implementation of modern statistical methods (wild bootstrap and SIMEX) to assess variance and bias in DTI contrasts, and quality assessment via power calculations and normative values. For this pipeline, a DTI specific power calculation analysis is developed as well as the first incorporation of bias estimates in DTI data to improve statistical analysis.
引用
收藏
页数:8
相关论文
共 10 条
  • [1] A. C. o. Radiology, 2004, MRI QUAL CONTR MAN
  • [2] Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review
    Basser, PJ
    Jones, DK
    [J]. NMR IN BIOMEDICINE, 2002, 15 (7-8) : 456 - 467
  • [3] Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI [10.1201/9781420010138, DOI 10.1201/9781420010138]
  • [4] Asymptotics for the SIMEX estimator in nonlinear measurement error models
    Carroll, RJ
    Kuchenhoff, H
    Lombard, F
    Stefanski, LA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 242 - 250
  • [5] Effects of signal-to-noise ratio on the accuracy and reproducibility, of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
    Farrell, Jonathan A. D.
    Landman, Bennett A.
    Jones, Craig K.
    Smith, Seth A.
    Prince, Jerry L.
    van Zijl, Peter C. M.
    Mori, Susumu
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 26 (03) : 756 - 767
  • [6] THE RICIAN DISTRIBUTION OF NOISY MRI DATA
    GUDBJARTSSON, H
    PATZ, S
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) : 910 - 914
  • [7] Squashing peanuts and smashing pumpkins: How noise distorts diffusion-weighted MR data
    Jones, DK
    Basser, PJ
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 979 - 993
  • [8] Landman B. A., 2010, NEUROIMAGE, V54, P12
  • [9] Lauzon C. B., ASSESSMENT BIAS MRI
  • [10] Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging
    Whitcher, Brandon
    Tuch, David S.
    Wisco, Jonathan J.
    Sorensen, A. Gregory
    Wang, Liqun
    [J]. HUMAN BRAIN MAPPING, 2008, 29 (03) : 346 - 362