Shot noise sets the limit of quantification in electrochemical measurements

被引:33
作者
Gao, Rui [1 ]
Edwards, Martin A. [1 ]
Harris, Joel M. [1 ]
White, Henry S. [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Electrochemistry; Shot-noise limit; Limit of quantification; Signal-to-noise; Electrochemical amplification; ELECTRON-TRANSFER; CHEMICAL-REACTIONS; SINGLE; NANOPARTICLES; VOLTAMMETRY; MOLECULES; BANDWIDTH; AEROLYSIN; PROTEINS; CLUSTERS;
D O I
10.1016/j.coelec.2020.05.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Detection of single molecules, particles, and rapid redox events is a challenge of electrochemical investigations and requires either an amplification strategy or significant aver-aging for the electrochemical current to exceed the noise level. We consider the minimum number of electrons required to reach the limit of quantification in these electrochemical measurements. A survey of the literature indicates that the state-of-the-art limit in current detection for different types of measurements (e.g. voltammetry, single molecule redox cycling, ion channel recordings of single molecules, metal nanoparticle collision, and phase nucleation) is independent of the nature of the measurement and increases linearly with reciprocal response time, Delta t(-1), over-5 orders of magnitude (from similar to 10 to similar to 106 s(-1)). We demonstrate that the practical limit of quantification requires cumulative measurement of similar to 2100 electrons during At and is determined by statistics of counting electrons, that is, the shot noise in the current.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 58 条
  • [11] Cao C, 2016, NAT NANOTECHNOL, V11, P713, DOI [10.1038/nnano.2016.66, 10.1038/NNANO.2016.66]
  • [12] A molecular switch based on potential-induced changes of oxidation state
    Chen, F
    He, J
    Nuckolls, C
    Roberts, T
    Klare, JE
    Lindsay, S
    [J]. NANO LETTERS, 2005, 5 (03) : 503 - 506
  • [13] Clarke J, 2009, NAT NANOTECHNOL, V4, P265, DOI [10.1038/NNANO.2009.12, 10.1038/nnano.2009.12]
  • [14] OBSERVATION OF INDIVIDUAL CHEMICAL REACTIONS IN SOLUTION
    COLLINSON, MM
    WIGHTMAN, RM
    [J]. SCIENCE, 1995, 268 (5219) : 1883 - 1885
  • [15] Subangstrom single-molecule measurements of motor proteins using a nanopore
    Derrington, Ian M.
    Craig, Jonathan M.
    Stava, Eric
    Laszlo, Andrew H.
    Ross, Brian C.
    Brinkerhoff, Henry
    Nova, Ian C.
    Doering, Kenji
    Tickman, Benjamin I.
    Ronaghi, Mostafa
    Mandell, Jeffrey G.
    Gunderson, Kevin L.
    Gundlach, Jens H.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (10) : 1073 - +
  • [16] ELECTROCHEMICAL DETECTION OF SINGLE MOLECULES
    FAN, FRF
    BARD, AJ
    [J]. SCIENCE, 1995, 267 (5199) : 871 - 874
  • [17] Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions
    Fu, Kaiyu
    Bohn, Paul W.
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (01) : 20 - 29
  • [18] A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions
    Gao, Rui
    Ying, Yi-Lun
    Li, Yuan-Jie
    Hu, Yong-Xu
    Yu, Ru-Jia
    Lin, Yao
    Long, Yi-Tao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (04) : 1011 - 1015
  • [19] Laplace Pressure of Individual H2 Nanobubbles from Pressure-Addition Electrochemistry
    German, Sean R.
    Edwards, Martin A.
    Chen, Qianjin
    White, Henry S.
    [J]. NANO LETTERS, 2016, 16 (10) : 6691 - 6694
  • [20] Fine-Tuning Porosity and Time-Resolved Observation of the Nucleation and Growth o Single Platinum Nanoparticles
    Glasscott, Matthew W.
    Dick, Jeffrey E.
    [J]. ACS NANO, 2019, 13 (04) : 4572 - 4581