Shot noise sets the limit of quantification in electrochemical measurements

被引:33
作者
Gao, Rui [1 ]
Edwards, Martin A. [1 ]
Harris, Joel M. [1 ]
White, Henry S. [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Electrochemistry; Shot-noise limit; Limit of quantification; Signal-to-noise; Electrochemical amplification; ELECTRON-TRANSFER; CHEMICAL-REACTIONS; SINGLE; NANOPARTICLES; VOLTAMMETRY; MOLECULES; BANDWIDTH; AEROLYSIN; PROTEINS; CLUSTERS;
D O I
10.1016/j.coelec.2020.05.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Detection of single molecules, particles, and rapid redox events is a challenge of electrochemical investigations and requires either an amplification strategy or significant aver-aging for the electrochemical current to exceed the noise level. We consider the minimum number of electrons required to reach the limit of quantification in these electrochemical measurements. A survey of the literature indicates that the state-of-the-art limit in current detection for different types of measurements (e.g. voltammetry, single molecule redox cycling, ion channel recordings of single molecules, metal nanoparticle collision, and phase nucleation) is independent of the nature of the measurement and increases linearly with reciprocal response time, Delta t(-1), over-5 orders of magnitude (from similar to 10 to similar to 106 s(-1)). We demonstrate that the practical limit of quantification requires cumulative measurement of similar to 2100 electrons during At and is determined by statistics of counting electrons, that is, the shot noise in the current.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 58 条
  • [1] Transistor-like behavior of transition metal complexes
    Albrecht, T
    Guckian, A
    Ulstrup, J
    Vos, JG
    [J]. NANO LETTERS, 2005, 5 (07) : 1451 - 1455
  • [2] Amatore C, 2001, CHEMPHYSCHEM, V2, P130, DOI 10.1002/1439-7641(20010216)2:2<130::AID-CPHC130>3.0.CO
  • [3] 2-K
  • [4] [Anonymous], 1980, ANAL CHEM, V52, P2242
  • [5] Bain LeeJ., 1987, INTRO PROBABILITY MA
  • [6] In situ nanoparticle sizing with zeptomole sensitivity
    Batchelor-McAuley, Christopher
    Ellison, Joanna
    Tschulik, Kristina
    Hurst, Philip L.
    Boldt, Regine
    Compton, Richard G.
    [J]. ANALYST, 2015, 140 (15) : 5048 - 5054
  • [7] Bell NAW, 2016, NAT NANOTECHNOL, V11, P645, DOI [10.1038/nnano.2016.50, 10.1038/NNANO.2016.50]
  • [8] Specific Protein Detection Using Designed DNA Carriers and Nanopores
    Bell, Nicholas A. W.
    Keyser, Ulrich F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) : 2035 - 2041
  • [9] Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis
    Boukhet, Mordjane
    Piguet, Fabien
    Ouldali, Hadjer
    Pastoriza-Gallego, Manuela
    Pelta, Juan
    Oukhaled, Abdelghani
    [J]. NANOSCALE, 2016, 8 (43) : 18352 - 18359
  • [10] Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids
    Byers, Joshua C.
    Nadappuram, Binoy Paulose
    Perry, David
    McKelvey, Kim
    Colburn, Alex W.
    Unwin, Patrick R.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (20) : 10450 - 10456