Higher order logarithmic derivatives of matrices in the spectral norm

被引:6
作者
Bhatia, R [1 ]
Elsner, L
机构
[1] Indian Stat Inst, New Delhi 110016, India
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
logarithmic derivative; exponential function; higher order derivatives;
D O I
10.1137/S0895479802413662
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the spectral norm ||.|| on n x n complex matrices, we derive the first three right-hand derivatives of phi(t) = ||e(tA)|| at t = 0. The first one is the well-known logarithmic derivative. This study was inspired by a recent result by Kohaupt, where the second derivative is studied for the l(p) norms, p = 1,infinity.
引用
收藏
页码:662 / 668
页数:7
相关论文
共 6 条
[1]  
DAHLQUIST G, 1959, KUNGL TEKN HOGSK HAN, V130
[2]   SENSITIVITY ANALYSIS OF ALL EIGENVALUES OF A SYMMETRICAL MATRIX [J].
HIRIARTURRUTY, JB ;
YE, D .
NUMERISCHE MATHEMATIK, 1995, 70 (01) :45-72
[3]  
Kato T., 1976, PERTURBATION THEORY
[5]  
Lozinskii S. M., 1958, IZV VYSS UCEBN ZAVED, V6, P52
[6]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE