CONDITIONS FOR THE CREATION OF HIGH-MODULUS POLYMER/CARBON NANOTUBES NANOCOMPOSITES

被引:2
|
作者
Kozlov, G., V [1 ]
Dolbin, I., V [1 ]
Karnet, Yu N. [2 ]
Vlasov, A. N. [2 ]
机构
[1] Kh M Berbekov Kabardino Balkarian State Univ, 174 Chernyshevsky Str, Nalchik 360004, Kabardino Balka, Russia
[2] Russian Acad Sci, Inst Appl Mech, 7 Leningradsky Ave, Moscow 125040, Russia
关键词
high-modulus nanocomposite; carbon nanotubes; elasticity modulus; structure; fractal dimensionality; percolation theory; mixture rule; CARBON NANOTUBES; REINFORCEMENT; ULTRASTRONG; NANOFILLER; STIFF;
D O I
10.1615/NanoSciTechnolIntJ.2020035609
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The factors determining the creation of high-modulus polymer/carbon nanotubes nanocomposites are investigated within the framework of percolation and fractal reinforcement models. It is shown that the degree of reinforcement (or the elasticity modulus) of the nanocomposite is controlled by three main factors: the structure of the nanofiller in the polymer matrix, its volumetric content, and the elasticity modulus of the matrix polymer. The structure of carbon nanotubes (or their ropes), characterized by its fractal dimensionality, is determined by the total influence of two types of interactions: polymer matrix-nanofiller and the interaction of carbon nanotubes within their rope. To obtain high-modulus polymer/carbon nanotubes nanocomposites, attraction interactions between carbon nanotubes are required.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [21] Development of New Models for Tensile Modulus of Metal/Carbon Nanotubes Nanocomposites
    Zare, Y.
    Rhee, K. Y.
    PHYSICAL MESOMECHANICS, 2021, 24 (01) : 46 - 52
  • [22] PREPARATION AND CHARACTERISATION OF PBT/CARBON NANOTUBES POLYMER NANOCOMPOSITES
    Kwiatkowska, Magdalena
    Broza, Georg
    Mecfel, Joanna
    Sterzynski, Tomasz
    Roslaniec, Zbigniew
    COMPOSITES THEORY AND PRACTICE, 2005, 5 (02): : 99 - 104
  • [23] Melt-mixed carbon nanotubes/polymer nanocomposites
    Banerjee, Joyita
    Dutta, Kingshuk
    POLYMER COMPOSITES, 2019, 40 (12) : 4473 - 4488
  • [24] Mechanical and Electrical Characterization of Polymer Nanocomposites with Carbon Nanotubes
    Bellucci, S.
    Coderoni, L.
    Micciulla, F.
    Rinaldi, G.
    Sacco, I.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2011, 3 (06) : 826 - 834
  • [25] Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review
    Han, Zhidong
    Fina, Alberto
    PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) : 914 - 944
  • [26] Prediction of reinforcement degree for nanocomposites polymer/carbon nanotubes
    Zhirikova, Z. M.
    Kozlov, G., V
    Aloev, V. Z.
    6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES, 2012, 1459 : 335 - 337
  • [27] Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation
    Morlat-Therias, Sandrine
    Fanton, Elisabeth
    Gardette, Jean-Luc
    Peeterbroeck, Sophie
    Alexandre, Michael
    Dubois, Philippe
    POLYMER DEGRADATION AND STABILITY, 2007, 92 (10) : 1873 - 1882
  • [28] Thermomechanical properties of multifunctional polymer hybrid nanocomposites based on carbon nanotubes and nanosilica
    Silva, Bruno Milton Oliveira
    Fernandes, Nathalia Maria Moraes
    Barbosa, Juliano Martins
    Pinto, Gabriel Matheus
    Benega, Marcos Antonio Gimenes
    Taha-Tijerina, Jose Jaime
    Andrade, Ricardo Jorge Espanhol
    Ribeiro, Helio
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (41)
  • [29] Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites
    Alamusi
    Hu, Ning
    Fukunaga, Hisao
    Atobe, Satoshi
    Liu, Yaolu
    Li, Jinhua
    SENSORS, 2011, 11 (11) : 10691 - 10723
  • [30] Polymer/carbon nanotubes nanocomposites: relationship between interfacial adhesion and performance of nanocomposites
    Zhao, Dan
    Jiang, Yu
    Ding, Yong
    Zhu, Guangda
    Zheng, Junping
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (14) : 10160 - 10172