Self-Assembly of Coil/Liquid-Crystalline Diblock Copolymers in a Liquid Crystal Solvent

被引:9
|
作者
Scruggs, Neal R. [1 ]
Verduzco, Rafael [1 ]
Uhrig, David [2 ]
Khan, Waliullah [3 ]
Park, Soo-Young [3 ]
Lal, Jyotsana [4 ]
Kornfield, Julia A. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Kyungpook Natl Univ, Dept Polymer Sci, Taegu 702701, South Korea
[4] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
SIDE-CHAIN POLYMERS; ASYMMETRIC BLOCK-COPOLYMERS; PHASE-BEHAVIOR; NEMATIC SOLVENTS; ANIONIC-POLYMERIZATION; CONCENTRATED-SOLUTIONS; TRIBLOCK COPOLYMERS; VARYING SELECTIVITY; MIXTURES; DYNAMICS;
D O I
10.1021/ma801598y
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Diblock copolymers having a random-coil polymer block (polystyrene, PS) connected to a side-group liquid crystal polymer (SGLCP) self-assemble in a nematic liquid crystal (LC), 4-pentyl-4'-cyanobiphenyl, into micelles with PS-rich cores and SGLCP-rich coronas. The morphologies of block copolymers with varying PS content are characterized as a function of temperature and concentration using small-angle neutron scattering, rheometry. and transmission electron microscopy. Unlike conventional solvents, the nematic LC can undergo a first-order transition between distinct fluid phases, accessing the regimes of both strong and slight selectivity in a single polymer/solvent pair. Micelles dissolve away above a microphase separation temperature (MST) that is often equal to the solution's isotropization point. T-NI. However. increasing or decreasing the polymer's PS content can shift the MST to be above or below T-NI. respectively. and in the former case, micelles abruptly swell with solvent at T-NI. Comparable effects can be achieved by modulating the overall polymer concentration.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [1] Microphase separation in comblike liquid-crystalline diblock copolymers
    Mkhonta, S. K.
    Elder, K. R.
    Huang, Zhi-Feng
    Grant, Martin
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [2] Self-assembly of crystalline-coil diblock copolymers in solution: experimental phase map
    Mihut, Adriana M.
    Crassous, Jerome J.
    Schmalz, Holger
    Drechsler, Markus
    Ballauff, Matthias
    SOFT MATTER, 2012, 8 (11) : 3163 - 3173
  • [3] Self-assembly of a liquid crystal ABA triblock copolymer in a nematic liquid crystal solvent
    Islam, Mohammad Tariqul
    Kamal, Tahseen
    Shin, Taegyu
    Seong, Baekseok
    Park, Soo-Young
    POLYMER, 2014, 55 (16) : 3995 - 4002
  • [4] Liquid crystalline bilayers self-assembled from rod-coil diblock copolymers
    Cai, Yongqiang
    Zhang, Pingwen
    Shi, An-Chang
    SOFT MATTER, 2017, 13 (26) : 4607 - 4615
  • [5] Thermosensitive Self-Assembly of Diblock Copolymers with Lower Critical Micellization Temperatures in an Ionic Liquid
    Tamura, Saki
    Ueki, Takeshi
    Ueno, Kazuhide
    Kodama, Koichi
    Watanabe, Masayoshi
    MACROMOLECULES, 2009, 42 (16) : 6239 - 6244
  • [6] Theoretical Platform for Liquid-Crystalline Self-Assembly of Collagen-Based Biomaterials
    Khadem, Sayyed Ahmad
    Rey, Alejandro D.
    FRONTIERS IN PHYSICS, 2019, 7 (JUN):
  • [7] Self-assembly of symmetric rod-coil diblock copolymers in cylindrical nanopore
    Huang, Jian-Hua
    Wu, Jia-Jun
    Huang, Xiao-Wei
    RSC ADVANCES, 2016, 6 (102): : 100559 - 100567
  • [8] Self-assembly and ionic conductivity of phthalocyanine-containing liquid-crystalline compound films
    Zhou, Jingda
    Yan, Guiyang
    Wang, Jiwei
    Bie, Lele
    Liu, Shuiyang
    He, Xiaozhi
    Meng, Fanbao
    THIN SOLID FILMS, 2020, 709
  • [9] RECENT DEVELOPMENTS IN LIQUID CRYSTALLINE AZO BLOCK COPOLYMERS :SELF-ASSEMBLY AND PHOTORESPONSIVE PROPERTIES
    Zhu, Yu
    Wang, Xiao-gong
    ACTA POLYMERICA SINICA, 2013, (08) : 962 - 970
  • [10] Hydrogen bond mediated self-assembly of two diblock copolymers
    Anderson, Eric R.
    Daga, Vikram K.
    Gido, Samuel P.
    Watkins, James J.
    JOURNAL OF POLYMER SCIENCE, 2020, 58 (21) : 3061 - 3068