Transverse Orbital Stability of Periodic Traveling Waves for Nonlinear Klein-Gordon Equations

被引:2
|
作者
Angulo Pava, Jaime
Plaza, Ramon G.
机构
[1] Univ Sao Paulo, BR-05508 Sao Paulo, Brazil
[2] Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico
基金
巴西圣保罗研究基金会;
关键词
DE-VRIES EQUATION; SOLITARY WAVES; MODULATION EQUATIONS; INSTABILITY; PROPAGATION; SYMMETRY; SPECTRA;
D O I
10.1111/sapm.12131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the orbital stability of a class of spatially periodic wave train solutions to multidimensional nonlinear Klein-Gordon equations with periodic potential. We show that the orbit generated by the one-dimensional wave train is stable under the flow of the multidimensional equation under perturbations which are, on one hand, coperiodic with respect to the translation or Galilean variable of propagation, and, on the other hand, periodic (but not necessarily coperiodic) with respect to the transverse directions. That is, we show their transverse orbital stability. The class of periodic wave trains under consideration is the family of subluminal rotational waves, which are periodic in the momentum but unbounded in their position.
引用
收藏
页码:473 / 501
页数:29
相关论文
共 50 条
  • [1] Stability of solitary waves in nonlinear Klein-Gordon equations
    Raban, Pablo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [2] Orbital stability of periodic standing waves for the logarithmic Klein-Gordon equation
    Natali, Fabio
    Cardoso, Eleomar, Jr.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
  • [3] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Jones, Christopher K. R. T.
    Marangell, Robert
    Miller, Peter D.
    Plaza, Ramon G.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 417 - 429
  • [4] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Christopher K. R. T. Jones
    Robert Marangell
    Peter D. Miller
    Ramón G. Plaza
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 417 - 429
  • [5] (Non)linear instability of periodic traveling waves: Klein-Gordon and KdV type equations
    Pava, Jaime Angulo
    Natali, Fabio
    ADVANCES IN NONLINEAR ANALYSIS, 2014, 3 (02) : 95 - 123
  • [6] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Jian Zhang
    Zai-hui Gan
    Bo-ling Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 427 - 442
  • [7] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Zhang, Jian
    Gan, Zai-hui
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 427 - 442
  • [8] Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations
    Marangell, R.
    Miller, P. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 308 : 87 - 93
  • [9] Nonlinear Stability of Periodic Traveling Wave Solutions for (n+1)-Dimensional Coupled Nonlinear Klein-Gordon Equations
    Sun, Cong
    Jiang, Bo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [10] Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrodinger equations
    Hioe, FT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7307 - 7330