Quasipolynomial-time Identity Testing of Non-Commutative and Read-Once Oblivious Algebraic Branching Programs

被引:60
作者
Forbes, Michael A. [1 ]
Shpilka, Amir [2 ]
机构
[1] MIT, CSAIL, Dept EECS, 32 Vassar St, Cambridge, MA 02139 USA
[2] Technion Israel Inst Technol, Fac Comp Sci, Haifa, Israel
来源
2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) | 2013年
关键词
branching programs; derandomization; non-commutative polynomials; polynomial identity testing; PSEUDORANDOM GENERATORS; HARDNESS;
D O I
10.1109/FOCS.2013.34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms (PIT) for algebraic branching programs (ABPs) that are read-once and oblivious. This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka [1]), but prior to this work there was no known such black-box algorithm. The main result of this work gives the first quasi-polynomial sized hitting sets for size S circuits from this class, when the order of the variables is known. As our hitting set is of size exp(lg(2) S), this is analogous (in the terminology of boolean pseudorandomness) to a seed-length of lg(2) S, which is the seed length of the pseudorandom generators of Nisan [2] and Impagliazzo-Nisan-Wigderson [3] for read-once oblivious boolean branching programs. Thus our work can be seen as an algebraic analogue of these foundational results in boolean pseudorandomness. Our results are stronger for branching programs of bounded width, where we give a hitting set of size exp(lg(2) S/lg lg S), corresponding to a seed length of lg(2) S/lg lg S. This is in stark contrast to the known results for read-once oblivious boolean branching programs of bounded width, where no pseudorandom generator (or hitting set) with seed length o(lg(2) S) is known. Thus, while our work is in some sense an algebraic analogue of existing boolean results, the two regimes seem to have non-trivial differences. In follow up work ([4]), we strengthened a result of Mulmuley [5], and showed that derandomizing a particular case of the Noether Normalization Lemma is reducible to black-box PIT of read-once oblivious ABPs. Using the results of the present work, this gives a derandomization of Noether Normalization in that case, which Mulmuley conjectured would difficult due to its relations to problems in algebraic geometry. We also show that several other circuit classes can be black-box reduced to read-once oblivious ABPs, including set-multilinear ABPs (a generalization of depth-3 set-multilinear formulas), non-commutative ABPs (generalizing non-commutative formulas), and (semi-) diagonal depth-4 circuits (as introduced by Saxena [6]). For set-multilinear ABPs and non-commutative ABPs, we give quasi-polynomial-time black-box PIT algorithms, where the latter case involves evaluations over the algebra of (D + 1) x (D + 1) matrices, where D is the depth of the ABP. For (semi-) diagonal depth4 circuits, we obtain a black-box PIT algorithm (over any characteristic) whose run-time is quasi-polynomial in the runtime of Saxena's white-box algorithm, matching the concurrent work of Agrawal, Saha, and Saxena [7]. Finally, by combining our results with the reconstruction algorithm of Klivans and Shpilka [8], we obtain deterministic reconstruction algorithms for the above circuit classes.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 58 条
[1]  
Aaronson Scott, 2008, ARITHMETIC NATURAL P
[2]  
Agrawal M, 2005, LECT NOTES COMPUT SC, V3821, P92, DOI 10.1007/11590156_6
[3]   PRIMES is in P [J].
Agrawal, M ;
Kayal, N ;
Saxena, N .
ANNALS OF MATHEMATICS, 2004, 160 (02) :781-793
[4]  
Agrawal M., 2012, ELECT C COMPUTATIONA, V19
[5]   MINIMAL IDENTITIES FOR ALGEBRAS [J].
AMITSUR, AS ;
LEVITZKI, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (04) :449-463
[6]   Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae [J].
Anderson, Matthew ;
van Melkebeek, Dieter ;
Volkovich, Ilya .
2011 IEEE 26TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2011, :273-282
[7]   New Results on Noncommutative and Commutative Polynomial Identity Testing [J].
Arvind, V. ;
Mukhopadhyay, Partha ;
Srinivasan, Srikanth .
COMPUTATIONAL COMPLEXITY, 2010, 19 (04) :521-558
[8]  
Arvind V, 2010, ACM S THEORY COMPUT, P677
[9]  
Arvind Vikraman, 2009, IARCS ANN C FDN SOFT, P25
[10]  
Ben-Or M., 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, P301, DOI 10.1145/62212.62241