On the estimation of the order of Euler-Zagier multiple zeta-functions

被引:11
作者
Ishikawa, H [1 ]
Matsumoto, K
机构
[1] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1215/ijm/1258138096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper bound estimates for Euler-Zagier multiple zeta-functions. First, by shifting the paths of the relevant Mellin-Barnes type integrals to the right, we prove an estimate for general r-fold zeta-functions. Then, in the cases r = 2 and r = 3, we give further improvements by shifting the path suitably to the left.
引用
收藏
页码:1151 / 1166
页数:16
相关论文
共 16 条
[1]  
Akiyama S, 2002, DEV MATH, V6, P1
[2]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[3]  
[Anonymous], 2003, J THEORIE NOMBRES BO, DOI DOI 10.5802/JTNB.402
[4]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[5]   THE MEAN-VALUE OF THE RIEMANN ZETA-FUNCTION [J].
ATKINSON, FV .
ACTA MATHEMATICA, 1949, 81 (04) :353-376
[6]  
HUXLEY MN, 1993, P LOND MATH SOC, V66, P1
[7]  
Ishikawa H, 2001, INT SOC ANAL APP COM, V9, P105
[8]  
Ivi A., 1985, The Riemann zeta-function
[9]  
KATSURADA M, 1998, COLLECT MATH, V38, P98
[10]  
Katsurada M., 1997, COLLECT MATH, V48, P137