ON AN ACTION OF THE BRAID GROUP B2g+2 ON THE FREE GROUP F2g

被引:4
作者
Kassel, Christian [1 ,2 ]
机构
[1] CNRS, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Strasbourg, F-67084 Strasbourg, France
关键词
Braid group; free group; symplectic group; ramified covering;
D O I
10.1142/S0218196713400110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an action of the braid group B2g+2 on the free group F-2g extending an action of B-4 on F-2 introduced earlier by Reutenauer and the author. Our action induces a homomorphism from B2g+2 into the symplectic modular group Sp(2g)(Z). In the special case g = 2 we show that the latter homomorphism is surjective and determine its kernel, thus obtaining a braid-like presentation of Sp(4)(Z).
引用
收藏
页码:819 / 831
页数:13
相关论文
共 13 条
[1]   FINITE PRESENTATION OF SYMPLECTIC GROUP SP4(Z) [J].
BEHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1975, 141 (01) :47-56
[3]  
Bergau P., 1960, MATH Z, V74, P414
[4]  
BIRMAN J, 1975, ANN MATH STUDIES, V82
[6]   SIEGELS MODULAR GROUP [J].
BIRMAN, JS .
MATHEMATISCHE ANNALEN, 1971, 191 (01) :59-&
[7]  
Dehornoy P., BRAID APPLET
[8]  
Goeritz Lebrecht, 1933, Abh. Math. Sem. Univ. Hamburg, V9, P244, DOI [10.1007/BF02940650, DOI 10.1007/BF02940650]
[9]   Sturmian morphisms, the braid group B4, Christoffel words and bases of F2 [J].
Kassel, Christian ;
Reutenauer, Christophe .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (02) :317-339
[10]  
Kassel C, 2008, GRAD TEXTS MATH, V247, P1, DOI 10.1007/978-0-387-68548-9_1