Scale-free patterns at a saddle-node bifurcation in a stochastic system

被引:3
作者
Iwata, Mami [1 ]
Sasa, Shin-ichi [1 ]
机构
[1] Univ Tokyo, Dept Pure & Appl Sci, Meguro Ku, Tokyo 1538902, Japan
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.055202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that scale-free patterns are observed in a spatially extended stochastic system whose deterministic part undergoes a saddle-node bifurcation. Remarkably, the scale-free patterns appear only at a particular time in relaxation processes from a spatially homogeneous initial condition. We characterize the scale-free nature in terms of the spatial configuration of the exiting time from a marginal saddle where the pair annihilation of a saddle and a node occurs at the bifurcation point. Critical exponents associated with the scale-free patterns are determined by numerical experiments.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Direct experimental evidence of a growing length scale accompanying the glass transition [J].
Berthier, L ;
Biroli, G ;
Bouchaud, JP ;
Cipelletti, L ;
El Masri, D ;
L'Hôte, D ;
Ladieu, F ;
Pierno, M .
SCIENCE, 2005, 310 (5755) :1797-1800
[2]   Diverging length scale and upper critical dimension in the Mode-Coupling Theory of the glass transition [J].
Biroli, G ;
Bouchaud, JP .
EUROPHYSICS LETTERS, 2004, 67 (01) :21-27
[3]   Inhomogeneous mode-coupling theory and growing dynamic length in supercooled liquids [J].
Biroli, Giulio ;
Bouchaud, Jean-Philippe ;
Miyazaki, Kunimasa ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[4]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[5]   Asymmetric kinks: Stabilization by entropic forces [J].
Costantini, G ;
Marchesoni, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (11) :art. no.-114102
[6]   INTRINSIC FLUCTUATIONS AND A PHASE-TRANSITION IN A CLASS OF LARGE POPULATIONS OF INTERACTING OSCILLATORS [J].
DAIDO, H .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) :753-800
[7]   Dynamical heterogeneity close to the jamming transition in a sheared granular material [J].
Dauchot, O ;
Marty, G ;
Biroli, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[8]  
Goldenfeld N., 2018, Lectures on phase transitions and the renormalization group
[9]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[10]   GEOMETRICAL CLUSTER GROWTH-MODELS AND KINETIC GELATION [J].
HERRMANN, HJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 136 (03) :153-224